RL-TR-91-36, Vol lla (of seven)

;—‘in_:-lxlggfhnical Report
" AD-A236 129
TR

ROMULUS: A COMPUTER SECURITY
PROPERTIES MODELING ENVIRONMENT
The Theory of Security

ORA

lan Sutherland, Tanya Korelsky, Daryl McCullough,
David Rosenthal, Jonathan Seldin, Marcos Lam,

Carl Eichenlaub, Bruce Esrig, James Hook, Carl Klapper,
Garrel Pottinger, Owen Rambow, Stanley Perlo

DTIC

FELECTE
JUN 0 41991

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

91-0

A s
”LAWMMMMW&

Rome Laboratory
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

g1 o 31 040
o

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information
Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-91-36, Volume Ila (of seven) has been reviewed and is approved
for publication.

APPROVED: W 1/ /2/41[

JOSEPH W. FRANK
Project Engineer

APPROVED: M /

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER: %J/

RONALD RAPCSO
Directorate of Plans & Programs

1f your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (COAC) Griffiss AFB, NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Publiic reportng birdian for this colection of INONTENonN is estrretad (D SVersgs 1 NOLr DIf NEDONSR, NCLCING the tT fOF MAMEBWNG NITUZIONS, SeErTNg GO Git SOLICER,
QECNaNg #Nd MAarteNing the cits Nesced, anct cTEisting arcd revisweng the colection of formation. Send convyrarts regerding
colection of Ffammenon, iNcudng SUEOEoNS for recucing this turden, t Weshington Headourters Services, Oreczorats for ifarrnation Operastiors andRepats, 1215 Jefferson
Qavis Higrway, Scks 1204, Avinggon, VA 22202-4302, srxd to the Office o Maregemse and Buiget, Pepewark Redceion Praject (070401 88), Washingron, DC 20502

this turcien sstmEte or ary other aspece of this

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
April 1991 Final Apr 85 - May 90
. m SUBTAm(:.ZEOMPUTER SECURITY PROPERTIES MODELING » ot S
ENVIRONMENT, The Theory of Security gE : gggggz’ss-c'ooga
& AUTHOR(S) 1an Sutherland, lanya Korelsky, Daryl McCullough, |PR - 1065
David Rosenthal, Jonathan Seldin, Marcos Lam, Carl TA - 01
Eichenlaub, Bruce Esrig, James Hook, Carl Klapper, WU - 02
G n W nley Perlo —
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
ORA REPORT NUMBER
301A Harris B. Dates Drive
Ithaca NY 14850-1313 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory (COAC)
Griffiss AFB NY 13441-5700

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-91-36, Vol 1IIa
(of seven)

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer:

Joseph W. Frank/COAC/(315) 330-2925

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT Madmusm XX wards)

Environment.
Odyssey Research Associates.

a collection of secure restrictive composite system.

Romulus system.
Mathesis, the mathematical foundations of Romulus.

and verification of trusted computer systems, together with supporting tools.
Romulus methodology is based on a mathematical theory of security developed at
The theory formalizes multilevel information flow
security by introducing restrictiveness, a hookup security property. This means that
Because of its composabilitvy

restrictiveness is a useful security property for large, complex, distributed systemc

The Romulus Report describes the Romulus Computer Security Properties Modeling
Romulus 1s an environment and methodology for the modeling, analysis.

The

Volume I presents an overview of the important ideas and tools incorporated into the
Volume II describes the underlying theory of security as well as

Hookup Security-

NOTE: Rome Laboratory/RL (formerly Rome Air Development Center/RADC)
i
14. SUBJECT TERMS 14 NUMBER OF PAGES ‘
Computer Security, Romulus, Verification, Multilevel Security, 148 §
14 PRICE COOE T

1
i

17. SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
UNCLASSIFIED UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED UL

20. UMITATION OF ABSTRACT

P —
NSN 7540-01 -260- 5600

Sl-'moramalg:;v
Prescrbed by ANS!

2.
23.?.

Acknowledgements

I would like to thank Ian Sutherland, Doug Weber, Stanley Perlo, Ram
Varadarajanand, Tanya Korelsky, and Richard Platek for the discussions
which generated and the ideas presented here. I would especially like to thank
Tanya Korelsky, for her encouragement and suggestions, Stanley Perlo, for
catching an amazing number of errors, and Toni Yengo, for all the pictures.

Daryl McCullough

Ithaca, New York
July, 1988

Accession For

NTIS GRA&I

DTIC TAB O
Unannounced a
Justification ________ |
By

Distributton/

 Availubility Codes

_ Avail and/or
Dist Special

L

Contents

2.2

2.3

24

3.1

3.2
3.3
3.4
3.5

Requirements for a Model of Security

Subtleties and Traps in Computer Security

2.1.1 Example: A Random Eavesdropping Machine
Is Nondeducibility Preserved by Hook-Up?
2.2.1 Example: Hook-Up Destroys Nondeducibility

The Dangers of Underspecification and Nondeterminism

23.1 Livenessand Safety

2.3.2 Is Security a Safety Property?
2.3.3 [Example: Resource Sharing and Underspecification . .
Manifestly Secure Systems

Covert Channels and Degrees of Insecurity
Kinds of Covert Channels
3.1.1 Conventions and Notations for Systems
312 OnpeBitChannels....................
3.1.3 Noisy One-Bit Channels
314 Haf-BitChannels. '
Examples of Half-Bit Channels
Converting a Negative Half-Bit to a Positive Half-Bit
Two Half-Bits Makea Whole Bit
Avoiding Covert Channels e

Goguen—Meseguer Machines and MLS Noninterference
4.0.1 Assumptions Behind the Model
4.0.2 How to Make a System Deterministic

i

4.0;3 How to Preserve Noninterference Under Composition .

A Deducibility Model of Information Flow

5.1
5.2

Background Knowledgeof Users
Inference e

Process Specification

A Model for Systems

7.1
7.2
7.3
7.4
7.5

Possible Histories v i v i it it
Security Levelsand Views
The Information Contentsof Views
Deducibility Security,
Hook-Up Security,

Noninterference and Hook-Up Security

8.1
8.2

8.3
8.4

8.5
8.6

Why Care About Composability?
Weak Noninterference
8.2.1 A Flaw in Weak Noninterference
Strong Noninterference
Generalized Noninterference
8.4.1 A Flaw in Generalized Noninterference
The Definition That Works: Hook-Up Security
The Security Model and Its Properties

Event Systems and Hook-Up Security

9.1
9.2
9.3

9.4 -

9.5
9.6

Preliminary Definitions and Notation . . .".
Definition of an Event System
The Simple Hook-Up of Event Systems
Multi-Level Security for Event Systems
The Hook-Up of Two Rated Event Systems
Restrictive Views [
9.6.1 Restrictiveness
9.6.2 A Fact About Restrictive Views
9.6.3 A Strong Form of Restrictiveness

)

48

49
49
50
51
33

55

9.7 TheHook-UpTheorem 96

9.7.1 Merging Component Histories 97
9.8 Hook-Up Security for Rated Event Systems 107
10 An Example : A Delay Queue 109
10.1 Description of the Delay Queue 109
102 Useful Facts e, 111
10.3 Security of the Delay Queue 112
10.3.1 Proofof Lemmal 113
10.3.2 Proofof Lemma 2 117
10.3.3 Proof of Theorem8 118
11 A State Machine Formulation of Restrictiveness 119
11.1 Attributes of a State Machine 120
11.2 Security of State Machines 121
11.3 The Composability of Restrictiveness 123
11.3.1 The Composite Machine 124

11.3.2 Demonstrating Restrictiveness for the Composite Ma-
chine.0. ... ieeeennan 125
11.4 Hook-Up Security of State Machines 128
12 The Delay Queue As a State Machine 129
121 TheEvents i i 129
122 TheStates i i it i i it e ittt e 130
12.3 The Transition Relation 130
12.4 The Views and Equivalence Relations 131

12.5 Proving Restrictiveness 131

iii

Introduction

Romulus is a system being developed at Odyssey Research in Ithaca, New
York that is intended to assist in the design of secure computer systems. It
will provide a rich environment in which previously defined secure systems
and secure system components can be examined and incorporated into new
system designs dynamically. This environment is based on the same prin-
ciples of modularity and reusability that characterize modern programming
environments and includes an automated theorem proving and verification
engine.

This report discusses the foundations for the theory of security which will be
used by Ulysses. The organization of the report is as follows:

e In Chapter 1, we discuss the goals for the theory of security used by
Romulus.

e In Chapter 2, we discuss some of the difficulties in applying previous
models of security.

e In Chapter 3, we discuss the problem of Trojan Horses and covert
channels, and how hooking up systems can make the problems worse.

e In Chapter 4, we discuss in more detail the Goguen—Meseguer approach
to security.

e In Chapter 5, we briefly present Sutherland’s model of information flow,
which underlies the Romulus definition of security.

1

e In Chapter 6 we describe informally the Romulus model of systems as
processes.

e In Chapter 7, we give a more formal model of processes as event sys-
tems, and show how Sutherland’s information flow model is instantiated
for event systems. We also give the motivation behind the definition of
hook-up security, the definition of security used by Romulus.

o In Chapter 8, we consider a sequence of candidate definitions of hook-
up security, each correcting some of the flaws in the last definition.
This sequence of properties lead up to a property which works as a
definition of hook-up security.

e In Chapter 9, we prove a “hook-up theorem” which shows that when
systems which meet our definition of security are hooked up in a legal

manner, they form a composite system which is also secure by our
definition.

¢ In Chapter 10 we sketch a proof that a small system, the delay queue,
is hook-up secure.

e In Chapter 11, we discuss a formulation of hook-up security for state
machines and prove a “hook-up theorem” analogous to that for event
systems. :

¢ Finally, in Chapter 12, we redo the proof of security of the delay queue
using the state machine formalism.

Chapter 1

Requirements for a Model of
Security

Secure design in Romulus depends on flexible and sound theoretical foun-
dations. To develop such foundations we examined previous formalisms for
security, particularly the pioneering work of Bell and LaPadula in access con-
trol [BLP 76], and Goguen and Meseguer’s noninterference model [Gog 84).

Our investigations convinced us that, for the purposes of secure design in
Romulus, these previous models of security were lacking in some respects.
Some of the problems we found among these formalisms were:

e They were not based on observable behavior.
e They were not sufficiently implementation-independent.

e They could only be applied to completed systems, and therefore could
not be used for the incremental development of a secure design.

e They only applied at one level of abstraction.

o They were only suitable for deterministic systems.

3

The biggest problem, however, was that there was no research on the inter-
actions of trusted systems and processes—in particular, it was not known
to what extent security was preserved when one connected several trusted
systems into a distributed system.

The security formalism used by Romulus is based on this previous work, but
it goes beyond it in that it is intended to be useful in design as well as in
implementation. The Romulus security formalism can be used to analyze
the security of isolated components and partially fleshed-out system designs,
the implementations of which are still undetermined. This gives the designer
greater flexibility, allowing him to

o reuse off-the-shelf secure components

o discover the security flaws of a design early so as to minimize wasted
effort

o freely substitute components with equivalent security characteristics.

The deduition of security in Romulus was thus developed with the following
desiderata in mind:

1. It should be ostensible.

If a system is secure (or insecure), then that fact should be revealed
by the behavior of the system and should not depend on details which
have no observable consequences. We would like in the design process
to specify the observable behavior of the system and prove once and for
all that any implementation which reproduces that behavior is secure.
This would give the maximum flexibility to the implementers of the
design.

2. It should be sufficiently general.

It should be useful across different levels of abstraction, from design
to implementation. Since real systems are usually nondeterministic
at some level, we would like to use the formalism to analyze both
deterministic and nondeterministic systems.

4

3. It should be contezt-independent.

Placing a trusted component into a new environment should not negate
its security properties. This requirement is especially important for
networks and distributed systems, in which trusted systems can be
potentially connected in many different ways. The requirement that
trusted systems be connectable into a trusted network is a very natural
and important requirement, and was used as the basis for the Trusted
Network Evaluation Criteria [Ars 85).

4. It should preserve the advantages of previous security formalisms.

In particular, the defiunition of security should, like the Bell-LaPadula
model, allow the use of some unverified “off-the-shelf” software for
untrusted functions. It should also keep the intuitive connection be-
tween security and “preventing illegal information flow” found in the
noninterference and information flow models.

In this report, we discuss these criteria and develop a theory of security to
meet them. In the final chapters we prove the context-independence of our
theory by showing that using our definition, security is preserved under the
operation of connecting systems into networks, and we give a sketch of the
proof of security for a simple system.

Chapter 2

Subtleties and Traps in
Computer Security |

The existing formalisms for computer security are tricky to use in real systems
for two reasons:

1. The formal definitions of security do not always mean what we intu-
itively mean by security.
2. Existing specification and verification methodologies are not convenient
for the proof or the statement of system security.
In the following, we elaborate on these difficulties.

Multi-level security requirements for a computer system are usually formal-
ized in one of three ways:

1. As a requirement on access controls—The best-known example of such
a requirement is given by the Bell-LaPadula security model [BLP 76].
The requirements defined by their model can be summarized as follows:
Subjects (active entities such as users and processes) may only read

6

Easier to Enforce

o e1s Access
Deducibility Non-Interference Control
Control

More Fundamental

Figure 2.1: Trade-offs in Security Formalisms

objects (passive containers of information such as files) of lower level
and may only write objects of higher level.

. As a requirement on interference—The definitive statement of a re-
quirement of this kind was made by Goguen and Meseguer [Gog 84).
Noninterference requires that the actions of users should only interfere
with (or affect) what is seen by users of higher level.

. As a requirement on deducibility—A clear statement of this require-
ment is given by Sutherland [Sut 86]. Essentially, the requirement is
that users only be able to deduce the actions of users of lower level.
This requirement is the definition of security that is implicitly assumed
when encryption is used to protect data; although unauthorized users
may read the encrypted data, it is assumed that they will be unable to
deduce the meaning of the data.

The relationships among these formalizations is informally represented in
figure 2.1 by two scales: More Fundamental versus Easier to Enforce.

The meaning of the phrase “more fundamental” lies in the relationship be-
tween the formal statement of the requirement and the informal statement
of what is desired from the system. The purpose of security is to prevent

7

information from falling into malicious hands, and deducibility control is a
relatively straightforward formalization of that goal.

The meaning of “more enforceable” is that it is easier, in general, to see that a
system obeys an access control requirement than a deducibility requirement.
If a system has no access controls, then it is difficult to imagine how one
could ever prove that it is secure.

Roughly speaking, access controls are a means of enforcing noninterference
requirements and noninterference is a means of enforcing deducibility require-
ments. This might lead to the impression that access control is a stronger
requirement than noninterference, which is a stronger requirement than dedu-
cibility control. In the way that these formalisms are actually used, however,
this relationship is not true, for the following reasons:

1. Not all system interactions can be easily expressed as accesses. With
access controls, it is easy to ignore such system variables as directories,
the currently running process, timing information, etc.. Since such vari-
ables are not usually dignified with the label “object”, information flow
through them is not covered by access controls, and so such variables
must be analyzed separately, as “covert channels”. Thus, in actual
practice, access controls do not insure noninterference or deducibility
control.

2. With noninterference, if one uses a deterministic definition such as
that of Goguen and Meseguer, and applies it to a nondeterministic
system such as a network, the results may not have much to do with
deducibility control.

As a compromise between having a security formalism which is too gross and
one that is too difficult to use, we have chosen to use a nondeterministic form
of noninterference. We were guided in the development of our formalism by
examining a wide variety of pitfalls that await those who are not careful in
their security work. Below are a few simple examples of such.

8

2.1 Is Nondeducibility the Same as Nonin-
terference?

For nondeterministic systems, deducibility control is not the same as non-
interference and is not necessarily in agreement with our intuitive notion of
security. This is illustrated below by giving a system that is secure from the
point of view of deducibility, but is intuitively insecure.

We will define a system to be multi-level deducibility secure if it is impossible
during any run of the system for one user to deduce the actions made by an-
other user during that run unless the first user has a higher current security
level than the second. (This is an informal version of Sutherland’s definition
of information flow security. The formal statement is given in chapter 5.)
This definition assumes that the system starts out empty of classified infor-
mation and that the only way for classified information to enter the system is
through the actions of users. From this viewpoint it is of primary importance
to protect information about users’ actions.

Deducibility security seems to be a reasonable criterion for security. To see
if it really is adequate, though, we need to see how the criterion applies in
sample cases.

2.1.1 Example: A Random Eavesdropping Machine

Consider a system A with two users, one of level secret and another of level
unclassified. The secret user has a program which gives him text editing
facilities for his secret files. We will assume that every input the secret user
makes has level secret.

The unclassified user, besides text editing commands, has a special com-
mand “eavesdrop”. This command has the effect that if the secret user has
made any earlier secret inputs, then everything the secret user inputs after
“eavesdrop” is echoed to the unclassified user’s screen. If, however, there
have been no earlier secret inputs then the system will generate random text

9

to echo to the unclassified user.

Now, this system seems blatantly insecure, but nevertheless, there are no
illegal information flows. This is because it is always consistent for the un-
classified user to suppose that the secret user has made no inputs; it is always
possible that everything the unclassified user sees following the “eavesdrop”
command was created by the random text generator.

This example illustrates that deducibility security is not a very “robust”
criterion for security; a slight change in the assumptions can lead to very
different results. For example, if we assume that the unclassified user per-
forms a statistical analysis of the sequence of bytes that he receives, then he
can determine, with a high probability, which bytes convey real information
and which are random. The bytes which are random will tend, with high
probability, not to form coherent English sentences. Thus if a sequence of
bytes reads “We attack at dawn”, it is probably real and not random.

It is not immediately clear how we can distinguish between systems which are
“robustly secure” and systems which are “fragilely secure”, whose security
depends on whether there is some kind of pattern to the high level inputs.
While a full analysis of this subject may require a statistical or probabilistic
treatment of information, we can at least say the following: If a system
is robustly secure, then its security does not depend on the randomness
of inputs; it should remain secure even when the high-level inputs are not
random, but come in some kind of pattern.

One way that the inputs can have a pattern is if they come, not from a
human being, but from another machine whose behavior is known. If we
require that a secure system be deducibility secure for any choice of such a
machine to provide the inputs, then perhaps the anomalous examples such
as system A will be ruled out as insecure. This possibility is discussed in the
next section.

10

2.2 Is Nondeducibility Preserved by Hook-
Up?

Some formalizations for security have made implicit or explicit assumptions
that the external interface of the system connects the system with flesh and
blood human beings, when in actuality it is common these days for the
system to be connected to other machines. The assumption that the system
is complete is made explicitly in the Goguen-Meseguer model. In the Bell-
LaPadula model, it is assumed that “reading” an object only transfers in
one direction — to the subject doing the reading. In a network, however, all
interactions, including requests to read, can potentially transfer information
in both directions.

It is commonly believed that if we take into account the two-way information
transfer of protocols, that it is enough to connect secure machines to secure
machines in a secure way to get a secure network. This is the assumption
behind the DOD guidelines for network security [Ars 85]. However, our next
example shows that unless security is defined carefully, it is possible that
hooking together secure machines will produce an insecure network.

For illustration, we consider once again the system .4 from section 2.1.

2.2.1 Example: Hook-Up Destroys Nondeducibility

Although there are no illegal information flows for system A in the environ-
ment in which the only external interfaces connect the system with users, we
shall see that illegal information flows appear when it interfaces with another
system.

Let system B be a second system which has also two levels, secret and unclas-
sified. In this system, the unclassified user and the secret user both have text
editing facilities, which we will assume work by echoing everything typed by
each user to his own screen. In addition, every input made by the unclassified
user is echoed to the secret user’s screen before it is echoed to the unclassified

11

user’s screen. There are no illegal information flows on this system, either,
since the secret user’s inputs have no effect on the unclassified user.

Now, consider what happens when we connect system A with system B—
we imagine connecting them so that the unclassified outputs of each system
become unclassified inputs to the other system. We also allow both systems to
receive unclassified inputs from an unclassified user’s keyboard, and to receive
secret inputs from a secret user’s keyboard, and we allow the unclassified
outputs of either system to be echoed on the unclassified user’s screen, and
likewise the secret outputs of either system to be echoed to the secret user’s
screen.

When the unclassified user types in anything at all, the inputs are sent to
system B, which then echoes it twice; once as a secret output to the secret
user’s screen and system A, and again as an unclassified output to the un-
classified user’s screen and system .A. When the unclassified user receives
the echo from system B, he knows that there was a previous echo of a secret
signal to system A. He can then issue the command “eavesdrop” and know
for certain that it will work. Therefore, with 100 percent confidence, the
unclassified user can know that he will receive every input the secret user
makes to system .A (and not some randomly generated text).

Thus we see that knowing that a system is deducibility secure is not enough to
know that it will still be secure when connected to other secure systems. Since
we want to allow multi-level secure systems to be connected to each other, we
need a definition of “hook-up” security that tells us under what circumstances
this can be done safely. We will delay providing this definition until we give
a few more examples of the problems with security specifications.

2.3 The Dangers of Underspecification and
Nondeterminism

Now we turn to a new example which illustrates that even when we have
a good formal definition of security, there are problems in knowing when a

12

system meets the definition. We need to first have a short digression on what
it means for a system to meet various kinds of requirements.

2.3.1 Liveness and Safety

Properties of a computer program or system are sometimes divided into
“safety” and “liveness” properties. Safety properties are often described as
“negative” requirements: they require that certain behaviors of the systeme
never occur. They are statements of the form, “Whatever the system does,
it must not do such-and-such.” For example, the partial correctness of a
sort routine can be stated as “Whatever the routine does, it must not ter-
minate with the list unsorted.”® If a sort routine is demonstrated to meet
this partial-correctness condition, then it does not necessarily mean that the
program will sort a list, only that ifit halts, then the list will be sorted; it is
possible for a partially correct sort routine to run forever and never give any
result.

Liveness properties are “positive” requirements, stating that certain behavior
of the system must occur. Liveness properties include statements of the form
“This action must be performed eventually” or “This action must be per-
formed infinitely often”. Fair scheduling is an example of a liveness property:
it requires that every process must be scheduled.

Safety properties are much more manageable, both for the designer and for
the programmer. The designer gives the requirement, and the programmer
has the freedom to do anything at all as long as the requirement is met. Thus
in general the implementation is more definite and more deterministic than
the design, since choices made by the implementer constrict the behavior of

1The specification of partial correctness for a computer program S can be written in the
form {P}S{Q}, where P is an assertion about the state of the system before executing
program S, and Q is an assertion about the state of the program after the program S
terminates normally (that is, without raising any error conditions). To prove that S is
partially correct with respect to the specification {P}S{Q}, it is not necessary to prove
that S will ever terminate; S may go on computing forever or until it runs out of memory
and raises an error; however, if, after starting in a state of the system in which P is true,
one executes S and it does terminate, then Q will be true.

13

the system. As far as safety properties are concerned, if one implementation is
correct, then a more deterministic system (one with fewer possible behaviors)
is also correct.

For liveness properties, however, the relationship between implementation
and design is not so straightforward. If one system meets a liveness require-
ment, it does not necessarily follow that a more deterministic system will
meet the requirement. Therefore, when there are liveness requirements, one
must be much more careful that implementation decisions do not interfere
with the requirements.

Consider, for example, the liveness requirement that a scheduler be fair. A
nondeterministic implementation of such a scheduler might be one which ran-
domly chooses which process to schedule next in such a way that with virtual
certainty each process is scheduled eventually. However, if the scheduler is
made more deterministic, by having it make the choice the same way each
time, then this modified scheduler is not fair.

2.3.2 Is Security a Safety Property?

It is sometimes claimed that security is a safety property, that it is suffi-
cient to give the requirements at the design level and leave the rest up to
implementers. The reasoning goes that, since a system which does nothing
is secure (there are no illegal information flows in such a system), it must be
that security does not require that anything positive happen.

This reasoning is not correct; the fact is that as long as the design does not
uniquely specify what happens on the system, it is possible for an implemen-
tation to correctly meet the design and still not be secure. For such designs,
therefore, security cannot be exclusively a safety property. Our next example
provides an illustration.

14

2.3.3 Example: Resource Sharing and Underspecifi-
cation

This example should be familiar to those who have studied actual attempts
at breaking systems. We imagine a system which obeys a Bell-LaPadula
definition of security—each process has a level, and is allowed to only read
files of lower level and write files of higher level. We will suppose that:

e The system only supports one official programming language.
o The operational semantics of this language has been specified.

e The compilef has been verified to respect these semantics.

In the language specifications, the value of an array component is specified
to be equal to the last value read into it, if any; otherwise the value is
undefined. In the implementation of the programming language, when a
program declares an array of a certain size, the operating system sets aside
a chunk of memory large enough to hold that array.

Now, suppose that an unclassified user declares an array of bytes as large
as all of memory, and then prints it out without assigning any values to
it. Technically, what gets printed out is undefined, but it happens to look
just like whatever used to be in memory. If the user has just logged on,
then the chances are that what is lying around in memory is the password
table which the operating system had to load for the logon. Now, did this
system obey the specification, or didn’t it? If we interpret “undefined” and
“undetermined” as meaning essentially the same thing, and if we interpret
security as a safety property, then we are forced to say that this was a correct
implementation; everything required (that is, determined) by the design is
actually met by the implementation.

The problem is that even though, at the design level, certain results are
undefined or undetermined, at the implementation level these results are
determined by lower level facts; and the precise way in which the nondeter-
minism is resolved may provide an illegal channel which does not exist at

15

the design level. What is needed is a definition of security at the design level
which will insure that any correct implementation is also secure.

2.4 Manifestly Secure Systems

It may be argued at this point that nondeterminism is the source of all the
problems—that it is meaningless to talk about the security at the design level
unless the design completely determines what happens on the system. If this
is true, it is a sad fact indeed, since it implies that the time-honored tradition
of top-down development, with large decisions made by the designers and
the details worked out by the implementers, is not workable for security. It
implies that the security work can only begin when the system is finished.

It is our opinion that design-level security is not meaningless; it is just dif-
ficult, or at least subtle. There are, nevertheless, trivial examples which
llustrate that it is possible, at the design level, to insure that a system
is secure without completely determining the system. We give an example
pictorially in figure 2.2.

In the figure 2.2, the boxes represent machines which are components of a
larger system, and the arrows represent one-way (or “half-duplex”) commu-
nications lines between machines. The above picture describes a distributed
system made up of four components, two unclassified machines and two secret
machines. The secret machines are connected, and the unclassified machines
are connected, but the only connection between components of different levels
is a one-way connection from an unclassified component to a secret compo-
nent. This system is “manifestly secure”, even though we have specified
nothing at all about how the two systems behave.

The important feature about the design of secure systems is the connectivity,
the way that system components are allowed to communicate. If the connec-
tivity is manifestly secure, then any implementation that correctly maintains
the connectivity is secure.

For security, we can say informally what it means to correctly implement a

16

Secret

Unclassified

Secret

Unclassified

Figure 2.2: Manifestly secure system

17

design in terms of connectivity.

1. For each component of the system, the corresponding component of
the implementation must meet all the design requirements for that
component. These requirements do not necessarily specify the actions
of the component completely.

2. The interfaces between components must meet all the requirements of
the design.

3. The implementation must contain no new connections between compo-
nents which are not present in the design.

Point 2 is intended to insure that whatever nondeterminism is present in the
specification of the design is not resolved on the basis of any information
other than that explicitly available through the connections present in the
design. In the example in section 2.3.3, we can see in retrospect that at
the design level we failed to specify what “communications lines” would be
available to unclassified processes. If we had introduced at the design level
the connections linking components, we would have seen that the memory
management process necessarily has lines linking it with every other process,
as shown in figure 2.3. Unless either memory management or the unclassified
process is more completely specified, the system can be seen to have inse-
cure connections, since information can flow from the secret process to the
unclassified process through memory management.

The additional requirement on memory management that is necessary is that
actions of secret processes should not interfere with the inputs to the unclas-
sified processes, which is obviously not satisfied if the unclassified process can
read memory that was written by secret processes. Viewed in this context,
the memory management is a “trusted process”, since it involves processing
at several security levels at once. For such a process, it is necessary to have a
theory of “hook-up security” such that it can be connected to other processes
which are either “manifestly” or “hook-up” secure to yield a secure system.
The theory of “hook-up security” will be developed in chapter 9.

18

(Memory Management >

Secret Unclassified
Processes Processes

Figure 2.3: Information flo.v for resource sharing

In conclusion, we hope that the examples have shown some of the subtleties of
computer security. Keeping these subtleties in mind, the authors are working
towards a computer security formalism and methodology with the following
properties:

e The definition of security must imply the fundamental definition in
terms of deducibility control.

o The security of a complex system should follow from the security of
the components and their interconnections. Thus, a network of secure
machines should be secure.

o A proof of security at the design level should guarantee the security of
any correct implementation of the design.

e It is possible to say at the design level that a system is secure, and still
have large portions of the system nondeterministic and unspecified.

¢ The methodology for proving security must be able to make use of
the connectivity of complex systems. That is, security should be de-
composable, so that security can be insured by guaranteeing that the

19

components are correct, and that the interfaces between components
and to the outside world are correct.

20

Chapter 3

Covert Channels and Degrees
of Insecurity

In this chapter we will investigate various kinds of covert channels, of vari-
ous degrees of insecurity, and the ways in which the different kinds can be
interconverted and combined.

We will distinguish between two kinds of insecure systems. The first kind con-
tains some security loophole or trap door which allows the spy to bypass nor-
mal access controls and to directly receive classified data. The Bell-LaPadula
security model [BLP 76] is intended to prevent this kind of insecurity; for a
system to be secure in the sense of Bell-LaPadula, every possible sequence
of system state transitions must result in a secure state; i.e., one in which
no user has access to classified data unless he is officially authorized to have
that access.

The second kind of insecure system is one which disallows direct access of
data by unauthorized users, but nevertheless allows for covert channels. A
covert channel is an indirect communication path between users. For the
second kind of insecure system, it is often necessary for the spy to have a
partner which is privileged to see classified data and can signal this infor-
mation to the spy. The partner in high places can either be a human (in
which case it is unnecessary to communicate through the system at all; the

21

two can pass notes in the cafeteria) or a Trojan horse program. An im-
portant thing to realize about the Trojan horse program is that it does not
necessarily violate any rules of security; it may even be proven to be secure
according to some formal model of security. However, if the system on which
the program is running is insecure, it may be possible for the Trojan horse to
communicate classified information to the spy through the side effects of per-
fectly normal innocuous operations. The prevention of low-level side effects
of the behavior of high-level programs is the goal of various versions of non-
interference requirements on systems, including the Goguen-Meseguer non-
interference property{Gog 84] and the Bell-LaPadula “star” property (which
disallow the writing of low-level data by high-level programs.)

- 3.1 Kinds of Covert Channels

A covert channel can be characterized by how much information can be
sent over it, how dependable it is, and the degree of coordination needed
between the sender (the Trojan horse) and the receiver (the spy). A complete
characterization would include a probabilistic treatment of the dependability.
Here we will treat dependability in an especially simple way; we will assume
that information is always either trustworthy or not. Thus in trying to
determine the answer to a yes-no question, a spy can get three answers:
“yes”, “no”, or “maybe” (rather than “yes with a 30% probability”).

3.1.1 Conventions and Notations for Systems

To illustrate the possible behavior of systems, let us introduce a pictorial
notation for the traces, or possible histories, of systems. We depict a trace
of a system by giving a timeline running vertically, with the future of the
system toward the top and with the past of the system toward the bottom.
Horizontal vectors directed toward or away from the time line of a system
represent inputs to and outputs from that system, respectively. We will use
unbroken lines to represent unclassified inputs and outputs, and wavy lines
to represent secret inputs and outputs. In figure 3.1, we show a trace in

22

which there is a secret input followed later by an unclassified output.

In this discussion, we consider only input total systems; any input must be
accepted by a system. The reason for this assumption is that it is then easier
to analyze information flow: information can only enter a system through
input events, and can only leave a system through output events.

To represent two systems operating in parallel, we show their timelines to-
gether as in figure 3.2, which shows a trace in which an unclassified internal
signal is sent from system A to system B, followed by an unclassified input
to system A, followed by an unclassified output from system A4, followed by
an unclassified input and output of system B. The following is a list of notes
about conventions for parallel composition:

e Events common to the two component systems are internal, and must
be an input event for one system and output event for the other system,
and must have the same security level for the two systems.

o We will use the convention that events common to two systems will be
shown as vectors pointing right out of the left timeline or left out of
the right timeline.

e We assume that there is no propagation delay for exchanged signals;
the output from one system is simultaneously an input to the other
system.

o An input of a combined system is any input to either system which is
not an output of the other system. Thus such inputs will be shown
coming from the left toward the left timeline, or from the right toward
the right timeline.

¢ An output of the combined system is an output of either component
system which is not an input of the other system. Thus an output for
the combined system will be. shown as a left-pointing vector from the
left timeline, or as a right-pointing vector from the right timeline.

The legal traces of the combined system are traces such that the events
local to each component system form a legal trace for that system.

23

time

Figure 3.1: Pictorial Representation of a Trace
N /]

/] :———%
— K
—

R B

Figure 3.2: Hooking Up Two Systems in Parallel

24

e We are assuming no relationship between the processing rates of two
systems in parallel—any number of outputs of one system can take
place in the time between two outputs of the other system.

3.1.2 One-Bit Channels

Since any kind of information can be encoded as a sequence of bits (each bit
being one of two possibilities), it is only necessary for a Trojan horse to be
successful that it be able to communicate two different messages, as long as
it is possible to create arbitrarily long sequences of alternations of the two
messages. We will call a covert channel a one-bit channel if it is possible
using the channel to communicate two different messages.

The situation in which a Trojan horse is communicating with a low-level
user can be pictured as in figure 3.3. In this set-up, there are three data-
processing components: the Trojan horse, the leaky system, and the spy. To
communicate, there need to be two distinguished behaviors of the Trojan
horse, which we will assume, for purposes of illustration, to be particularly
simple:

e send signal a to the system

e send signal b to the system

For this set of behaviors for the Trojan horse, a system allows a one-bit
channel if it responds to the classified a from the Trojan horse in one way,
say by outputting “yes” to the spy, and responds to signal b another way,
such as outputting “no”. A system with a one-bit channel is not quite as bad
as one which allows the direct reading of classified data by the spy, because
it requires cooperation by a Trojan horse. However, given that there might
be a Trojan horse willing to cooperate, a one-bit channel is pretty bad for
security; with time, any amount of information can be transmitted.

25

Trojan
Horse

ab | | yes,no |
o& —e ‘{' d
Spy
Leaky system

Figure 3.3: A Trojan Horse, a Leaky System, and a Spy

26

3.1.3 Noisy One-Bit Channels

An insecure system has a noisy one-bit channel if the signal from the Trojan
horse is sometimes ambiguous: that is, if sometimes from the response of the
system it is impossible to tell which of two alternative signals was received
by the system from the Trojan horse. An example of this situation is a slight
~ modification of the one-bit example above. The Trojan horse’s input of an
a can give rise to two possible responses of the system: “yes” or “maybe”.
Likewise, b can give rise to two possible responses; “no” or “maybe”. The spy
must ignore “maybes”, since they are unreliable. Although communication
through a noisy channel is slower than through a clear channel, it is still
possible to communicate any amount of information accurately; the Trojan
horse only needs to repeat his signal often enough, until the response is
something other than “maybe”.

The possible histories of the system are indicated schematically in figure 3.4.

3.1.4 Half-Bit Channels

The two kinds of channels described above are clearly undesirable (to security
engineers; they are just as clearly desirable for spies). The existence of such
channels can only be tolerated if

e The channel is noisy enough that no appreciable information will be
transmitted in a reasonable amount of time.

The problem with this criterion is that it is often difficult t:+ estimate
the capacities of channels. It is also difficult to come up with an objec-
tive notion of what is an acceptable rate of information leakage. Is one
bit per hour acceptable? If such a channel were used to communicate
passwords to the spy, then the spy could possibly obtain a ten-byte
password in just eighty hours, or a little more than three days. (Pass-
words are not customarily changed that often.)

o The security engineer has confidence that there are no Trojan horse
programs which are allowed to access classified data.

27

/N
yes
R
ANNAN
d

Figure 3.4: Histories of a Noisy One-Bit Channel

maybe

ng

W

WV

Without careful analysis, such confidence is surely unwarranted. As I
pointed out earlier, the Trojan horse program does absolutely nothing
illegal; it lives within the rules of the game, only sending classified in-
formation to authorized users or “trusted” software such as the system
in question. The Trojan horse program may even be provably secure.
It is also conceivable that a piece of software may act like a Trojan
horse even when that was not the intention of the programmer who
wrote the software.

If one bit channels are clearly unacceptable, then are there other “almost
secure” systems which a security engineer could live with? Next we consider
two less useful covert channels, which could be called “half-bit channels”.
For these channels, the Trojan horse does not have the choice of two different
signals; it has a single signal, and it can either choose to send it or not.

Positive Half-Bit Channels We will call a covert channel a “positive half-
bit channel” if the spy can trust a “yes” response of the system to indicate
that the Trojan horse sent a signal, but there is no indication that it did not
send a signal. The possible histories of such a system are given by figure 3.5.
If the system receives a classified signal then it may respond with either “yes”,
or “maybe”. If the system does not receive a signal, it responds “maybe”.
The spy, seeing “yes”, knows that the Trojan horse has signaled him, but
seeing a “maybe” cannot be sure.

If the spy ignores all “maybes” as unreliable, then the communication he
receives from the Trojan horse is singularly boring; an unbroken string of
“yeses”. He can infer some information from this string; for instance, if
he counts them, he can place a lower bound on the number of signals the
Trojan horse actually sent. However, since some signals may have resulted
in “maybes”, he cannot depend on the exact count.

This half-bit channel seems like a rather poor way to spy, and some might
argue that it is not worthwhile to bother eliminating all such puny channels.
Yet in certain cases it is wise to be paranoid. An example of when such
a channel would be very useful to a spy is easy to cook up. Suppose that

29

yes

Figure 3.5: Histories of a Positive Half-Bit Channel

N

maybe

30

\%

n

aybhe

a Trojan horse were to be placed into the computer system of a gigantic
corporation. The Trojan horse could read classified files and look for evidence
of something big coming up—a stock split, or a merger—that would cause
the value of the company’s stock to shoot up overnight. In this case, for
the Trojan horse to be of value to the spy, it is enough that it be able to
communicate a single word “yes” (meaning “buy stock now!”).

Negative Half-Bit Channels For those who are worried about positive
half-bit channels, we will introduce yet a poorer channel, which they may be
willing to tolerate. In this case, the system can indicate to the spy that there
has definitely not been a signal from the Trojan horse, but there is no way to
indicate that there definitely has been a signal. We call this case a negative
half-bit channel, since it can only be used to give negative information.

maybe maybe

N\ Vg
Vg

end

|
rxjijﬁf> end end

begin 'begin begin

Figure 3.6: Histories of a Negative Half-Bit Channel

31

no «7\

The possible histories for such a channel are given in figure 3.6. For this
channel to work, unlike the other channels which allowed the spy to be a
passive observer, the spy must periodically request information from the
system. The spy starts an information period with the “begin” request, and
ends it with the “end” request. If in the period between “begin” and “end”
there has been no signal from the Trojan horse, the system responds “no”
or “maybe”. If there has been a signal, the system responds “maybe”. Once
again “maybes” are ambiguous; and if the spy ignores them, he is left with
an unbroken string of “nos”. What can he learn from such a string? It
seems that the answer is : absolutely nothing! He cannot depend on the
“nos” to indicate that the Trojan horse did not wish to signal him, since it
is possible that it had tried to signal, but produced “maybes”; or it could
be that the Trojan horse wished to signal, but had not gotten around to it
yet. (The Trojan horse after all might have other duties, such as acting like
a word-processor or a chess program.)

Because the spy is unable from his observations to deduce anything about
the intentions of the Trojan horse program, a system with only this kind of
covert channel could be called “deducibility-secure”. It also obeys a kind of
noninterference condition; it is not possible through this system for a Trojan
horse to reliably affect what the spy sees. There is no way for it to force
a “no” to be produced by the system; if it does nothing, it is possible for
“maybe” to be produced instead of “no”. There is also no way to force “no”
not to be produced, because it is always possible that a pair of requests from
the spy will come so close together that there is no time for the Trojan horse
to send a signal. Likewise, the Trojan horse cannot force “maybes” to either
be or not be produced, since if it sends a signal it is always possible that it
will be received between the “end” of one period and the “begin” of the next
(and so will not be considered).

3.2 Examples of Half-Bit Channels

“Naturally occurring” half-bit channels are often caused by the sharing of
finite resources. The buffering mechanism of the Gypsy specification lan-
guage [Goo 86] is a typical example of a shared resource which is finite in

32

the case of bounded buffers. A Gypsy buffer is a communication mechanism
in which messages are received in the same order they are sent, but which
may be received at an arbitrarily later time than they are sent. To receive a
message, a Gypsv procedure explicitly receives from a named buffer; and if
the buffer is not empty, the procedure will receive the message which is at the
head of the queae. The head message is then removed from the queue. If the
buffer is empty, the procedure “blocks”, meaning that it is suspended until
the buffer has something in it. To send a message, a procedure also names a
buffer. If the buffer is not full (determined by its length bounds), then the
message is put at the end of the queue. If the buffer is full, the procedure
blocks until there is space on the buffer for the message. The nice thing
about the buffering mechanism is that it is dependable: if a procedure tries
to send to a buffer, the next thing it experiences will always be a successful
send; and if a procedure receives from a buffer, the next thing it experiences
will always be a successful receive. (However, in either case, it is possible the
procedure will never experience anything; it may never become unblocked.)

For a Trojan horse and a spy to communicate, they must share some resource.
In the case of buffers, there are two ways for them to share a buffer in keeping
with Bell-LaPadula access rules:

1. The spy may send to a buffer which the Trojan horse is capable of
reading from. Since the Trojan horse is presumably higher-level than
the spy, this set-up is allowed by the rule “write up”.

2. The spy and the Trojan horse may both send to a buffer that is read
by some high-level or trusted procedure.

In the first case, a finite buffer may be used as a positive half-bit channel. To
use the buffer in this way, the spy sends enough messages to the buffer to fill
it up, and then sends one more. If the Trojan horse does nothing, then the
last send will be unsuccessful, since the buffer will be full. If the Trojan horse
wants to indicate a “yes” it only needs to receive from the buffer. When the
spy successfully completes his send, he knows that the Trojan horse has said
“yes”. The Trojan horse cannot say “no”, however, because if the send is
unsuccessful, the spy’s procedure will never become unblocked to inform the

spy of the fact.

33

AN

°éh-\~__‘\\§\\

Trojan Horse

- Reply Buffer

”””_’—’;,,,———37 Request

Buffer

< .

4

N

Spy _ Reply Buffer

Trusted
Server

Figure 3.7: A Negative Half-Bit Channel from Bounded Buffers

34

In the second case, the finite buffer may be used as a negative half-bit channel.
The mechanism for this is slightly more complicated. Suppose that the shared
buffer is used to request some service to be performed by a trusted procedure.
There are two buffers involved: the shared buffer for sending requests to the
trusted procedure, and a private buffer for the spy to receive replies. We
will assume that the trusted procedure receives requests one at a time, and
sends the reply before taking another request. In this case, if the length of
the request buffer is m and the length of the spy’s reply buffer is n, the spy
can send at most n 4+ m + 1 messages before receiving a reply from the reply
buffer. In the maximal case, the request buffer will be full, with m requests,
the reply buffer will be full, with n replies, and one more request will have
been taken from the request buffer; but the corresponding reply will not be
sent (since there is no more room in the reply buffer). Now, the spy can
receive from the reply buffer, making one more space. Then he can send one
more request.

If this last send is successful, it will mean that the Trojan horse did not
send a request. If it had, its request would have filled up the buffer, making
it impossible for the spy to send another request. It is impossible for the
trusted procedure to take any more requests from the buffer, since there is
nowhere to put the replies!.

The set-up creating a half-bit channel using bounded buffers is illustrated in
figure 3.7.

! Actually, in this case, if the Trojan horse does send to the buffer, it will lock every-
thing up hopelessly. An alternative strategy for the spy is for him to execute an “await”
statement instead of a send. An await statement allows a procedure to cither send to one
buffer or receive from another, depending on which buffer is available. If au await is used,
the spy will never be permanently blocked; the Trojan horse’s message will cause the spy’s
procedure to choose to receive a reply instead of sending to the request buffer. If the spy
manages to send to the request buffer, he knows that the Trojan horse did not send a
request.

35

3.3 Converting a Negative Half-Bit to a Pos-
itive Half-Bit

If one feels that a negative half-bit channel is acceptable, but that a positive
half-bit channel is not, then one must face the upsetting fact is that it is
possible to convert the one into the other. All that is necessary is a simple
converter process. This converter is illustrated in figure 3.8.

WV
N

end end

/
/4

begin begin

Figure 3.8: A Negative to Positive Channel Converter : Possible Histories

The converter process takes in classified inputs and sends out classified and
unclassified signals. If it has not received a classified signal since the last
unclassified output, then it outputs the sequence: “begin”, classified signal,
“end” (“begin” and “end” being two unclassified signals). If it has received
a classified signal in the period since the last unclassified output, then it

36

outputs the sequence “begin”, “end” (skipping the classified signal).

Now, the effect of this converter is to produce a classified output if and only
- if it does not receive a classified input. If this is combined with the negative
half-bit channel of figure 3.6, the resulting system is pictured in figure 3.9.

This combined system has the property that if a classified signal is received
by the converter, then the half-bit system will output “no” or “maybe”.
If no classified signal is received, the half-bit system will output “maybe”.
Therefore, the combined system acts like a positive half-bit channel (with
“no” to indicate a signal instead of “yes”).

The converter described above is actually a secure process, by most reason-
able definitions of security. To see this, one only needs to look at the unclas-
sified outputs; they are always “begin” followed by “end”. The sequence of
unclassified outputs is completely unaffected by classified inputs, and so the
process should be considered secure. The only objection one can make to
the converter process in isolation is that it produces classified outputs even
though there have been no classified inputs. Such outputs are “write-ups”
which are disallowed on some systems for integrity purposes; this prevents
unclassified users from being able to insert irrelevant material into classified

files.

3.4 Two Half-Bits Make a Whole Bit

Is it possible to add two positive half-bit channels to make a one-bit channel?
It sounds plausible, and in fact the answer is “yes”. This is demonstrated
in figure 3.10. In this composite system, we have systems .A and B, both of
which are positive half-bit channel systems. 4 indicates that it has received a
classified signal by outputting “yes” or “maybe”; and B indicates that it has
received a classified signal by outputting “no” or “maybe”. If either machine
fails to receive any classified input between two unclassified requests, it will
output “maybe”. Now, to combine A and B into a full-bit channel, we need
an additional server process S. If S receives classified signal a it will send a
classified signal to A. If it receives classified signal b, it will send a classified

37

end

begin

38

/N
end
A begin
N /N
maybe
—
end
L.r\./\/\/\f\f%
begin

Figure 3.9: A Positive from a Negative : Histories

yes, maybe no, maybe

N | N

Figure 3.10: A Full-Bit Channel from Two Half-Bits

39

signal to B. Therefore, if the combined system receives a classified a, it will
output an unclassified “yes” or “maybe”, and if it receives a classified b, it
will output “no” or “maybe”. The combined system is thus a noisy one-bit
channel.

3.5 Avoiding Covert Channels

From the previous discussions it should be evident that if one wishes to avoid
full-bit covert channels in systems, then he must make sure that at least one
of the following holds:

¢ There are no Trojan horses capable of exploiting half-bit channels. This
might be accomplished by disallowing “write-ups” if the only channels
are negative half-bit ones.

o There must be a notion of a secure system and a corresponding notion
of the legal “hook-up” of systems such that for any collection of secure
systems that are connected in legal ways, the resulting composite sys-
tem is secure. (At least in the sense that it does not allow any one-bit
channels.)

Since it may be difficult to tell when a program is a Trojan horse program
without detailed, costly analysis, it appears that the second route is the more
practical. It makes security analysis more modular, in that to make a com-
posite system secure, it is only necessary to make sure that each component
is secure and that all the connections are legal. We turn next to the discus-
sion of several security properties, and under what circumstances they are
composable properties.

40

Chapter 4

Goguen—Meseguer Machines
and MLS Noninterference

Goguen and Meseguer[Gog 84] take the principal notion behind security to
be that of noninterference rather than information flow. Noninterference can
be used to give information flow restrictions; rather than saying that person
A is not allowed to receive information from source B, one can instead say
that source B is not allowed to interfere with person A. The link between
the two statements is the plausible assumption (which can be formalized and
proved; this was done by Sutherland[Sut 86]) that .A cannot learn anything
about B unless B has some effect on (or interferes with) something visible to

A.

To make the notion of noninterference more precise, Goguen and Meseguer
give an abstract model for a class of information processing systems and
define noninterference for that class. Their original model was for state ma-
chines, and for general noninterference policies (and not simply for multilevel
security). We will modify their treatment in two ways:

1. We will only consider MLS noninterference properties.

2. We will give the definition in terms of input and output sequences
rather than state machines.

41

out (LIW11,Uy)

i /

User Ul v .

* W
Y ﬁo L

L 2

*

. Ha merged

inputs

- .

out ([IW11,Up)

Qutputs to Users

Figure 4.1: Goguen—Meseguer Machines

42

In their model, there is a collection of users, which we will call uy, us, ... u,.
Each user u; issues a sequence of commands w;. The command sequences
wy, Wy, ... Wy are merged to form the sequence w. The system computes a
function of its input sequence for each user, and the appropriate output is
sent to each user. This setup is illustrated in figure 4.1.

Each user u; has a security level assigned to him. If the system obeys the
MLS noninterference policy, then for every pair of users u; and u;, if the level
of u; is not less than or equal to the level of u;, then the inputs of u; may
not interfere with the outputs of user u;.

Formally, letting out([[w]], u;) be the outputs to user u; resulting from input
sequence w, and letting PG,;(w) be the result of purging from w all inputs
from user u;, the requirement of noninterference becomes, for all z, §, w:

level(u;) £ level(u;) — out([[w]], u;) = out([[PG.;(w)]], u;)

4.0.1 Assumptions Behind the Model

The model of information processing assumed by Goguen and Meseguer is
not completely general. By assuming that the output is a function of the
input sequence, they have restricted the set of systems to which their model
applies in at least two ways:

1. They only consider deterministic systems. For nondeterministic sys-
tems, the output is not a function of the input sequence, since more
than one output sequence can result from the same input sequence.

2. They only consider uninterruptable systems. This restriction is closely
related to the first, because a system with interrupts will look nonde-
terministic when one looks at the observable behavior. For example:
consider a system which allows the user to abort a computation that
is taking too long. For such a system, the same input sequence, the
start command followed by the abort command, can give rise to two

43

different output sequences depending on whether the abort command
comes before or after the calculation is completed. (If it comes in time,
the system may respond with “Ok”. If it comes too late, the system
may instead respond with “No processes running”.) The fact that in-
terrupts result in nond.eterminism reflects the fact that timing of events
is not considered in the model.

The above assumptions, while they rule out some perfectly reasonable sys-
tems from consideration, have the nice feature that if a system design is
proved to be MLS noninterfering, and if the output function really captures
everything about the system that is visible to the user, then any implementa-
tion will also be noninterfering, since everything visible to the user would al-
ready be decided at the design stage. If interrupts and nondeterminism were
included, then there would be the possibility that the implementation could
affect the precise way that the interrupts or the nondeterminism worked, thus
possibly invalidating the proof of security.

4.0.2 How to Make a System Deterministic

When inputs are coming from a human being, it may be plausible to treat
the system as infinitely fast; that is, the system can complete any calculation
between two inputs from the user. However, when inputs come not from a
human, but from another machine, this is no longer a reasonable assumption;
the possibility arises that the system may be given inputs faster than they can
be handled. Since we are ultimately going to be discussing the composition
of several machines, it’s necessary to give this matter a little thought. On
first analysis, there seem to be three ways of handling the untimely arrival
of inputs:

1. Assume that there is an unbounded input buffer. Then it would be
possible for the system to leisurely take the inputs as it has time for
them, and the result is the same as if the inputs had come more slowly.
This solution has the disadvantage of being impossible to implement
in this finite world. However, there may be situations in which a finite

44

but very long buffer can be treated as if it were infinite, if it is known
that there is a very small probability of the buffer becoming full.

2. Assume that there is a finite buffer, and that the process or person
making the inputs will “block” when the buffer is full; that is, patiently
wait for the buffer to have space before making an input. This is the
solution used by Gypsy, and as we have argued in Chapter 3, this kind
of buffer leads to “half-bit” channels. It may be possible that such half-
bit channels are not exploitable in systems obeying Goguen-Meseguer
noninterference.

3. Assume that there is a finite buffer, and that if the buffer is full, the
next message will be dropped (either with or without notifying the
sender).

One alternative to blocking inputs when a buffer is filled is to respond with
an error message “Busy” if a message arrives when the system is not ready
to take it. As shown in figure 4.2, this leads to nondeterminism, exactly as
the existence of interrupts did.

The Problem with Composition: Nondeterminism

Even if we assume infinite buffers, nondeterminism creeps in when we con-
sider connecting several processes. This is illustrated in figure 4.3. Here, we
see two processes f and g, each of which is deterministic. However, they
are connected together in such a way that their outputs are merged. Two
different output sequences of the resulting composite system are possible,
depending on which process, f or g, finishes first. Thus the resulting system
is nondeterministic (although determinism would be restored if the relative
processing speeds of f and g were taken into account.)

45

f(x) or "“busy"
\

'Y
.
L §

7

Figure 4.2: Not Blocking Inputs

46

e . f (W)
System f <f(W), gu)>
——ﬁ > - or
<gW), fu)>
Merged
Qutputs
e . g(w)
Split-
Input
System g

Figure 4.3: The Nondete:ministic Composition of Deterministic Machines

47

4.0.3 How to Preserve Noninterference Under Com-
position

To preserve the deterministic MLS noninterference property when processes
are composed it is necessary to require the following:

e Because bounded buffers seem either to lead to covert channels or to

nondeterminism, all processes must communicate through unbounded
buffers,

o There must be no merging of the outputs of different processes; that
is, two different processes may not both send to the same process or
buffer, since this leads to nondeterminism, which cannot be handled by
the Goguen and Meseguer definition of noninterference. This rules out
the kind of uses of multiprocessing in which the results of many parallel
computations are funneled into a centralized source, where they can be
acted upon as they arrive.

If these restrictions are bearable, then Goguen and Meseguer can be used
in composing systems. If they seem hard to live with (or if the assumption
of infinite buffers seems unrealistic), then there is a motivation to look for
a generalization of Goguen and Meseguer noninterference. As we mentioned
earlier, the assumption of deterministic processes, which seems to be at the
root of the problems, is not apparently relevant to security. We turn now to a
general formulation of information flow which does not make the assumption
of determinism.

48

Chapter 5

A Deducibility Model of
Information Flow

In this chapter, we give a brief overview of Sutherland’s model of information
flow. A more complete discussion can be found in [Sut 86].

5.1 Background Knowledge of Users

We consider the question of what it means for an observer (a flesh and blood
human or an artificially intelligent machine or computer program) to obtain
some desired information from an information processing system. Since it
takes information to be able to process information, we first consider what
kind of initial knowledge the observer may have about the system and his
possible interactions with it. :

First of all, we assume the user knows the design of the system. In principle,
then, the observer knows the set H of all possible histories of the system.
Depending on the details of his knowledge, a history may be, to name some
examples, the sequence of states of the system, the sequence of signals ex-
changed with the environment (other observers), or the real-time behavior

49

of the system, etc.

Second, we assume that the observer knows what his interface with the sys-
tem is. This defines the relationship between his observations and the his-
tory of what has gone on in the rest of the system. This relationship can
be expressed as a function, called the observer’s view, from histories into ob-
servations. For example, his view may be the sequence of characters printed
out on his computer screen.

Third, we assume that the observer knows what information he wants to
obtain. This information can also be expressed as a function from histories
into some value set. For example, he may wish to know the contents of some
secret file at a particular time, which will in general be a function of the
history of the system (especially the writes to the file) up until that time.

5.2 Inference

How much of the desired information can the observer discover through his
observations? We can state this question more generally: The observer’s
observations in a history are given by some function on the history. For
example, this function may take the history of all events that occur and keep
only the events which are visible to the observer’s terminal. Likewise, the
information is another function of the history. We will call such functions
which take a history and return information information functions. Thus
the general problem of information flow is that given any two information
functions f, and f;, what can be deduced about the value of f; given the
value of f;?

Let us return to our observer, and assume his view is defined by the informa-
tion function f;, and that his desired information is defined by function f,.
Suppose that his observations correspond to f; having value v;. He does not
know what has gone on outside of his view, so he does not know which out of
the set of possible histories is the actual one. However, he has a constraint on
* the possible histories; whatever history has taken place, it must be consistent
with what he has seen. Thus the actual history must be in the set

50

H, = {he H| fi(k) = v}

This is the set H; of all histories h consistent with the observation that

fl(h) = 1.

Now, for each history h in H,, the observer can in principle calculate the
value his desired information function, f; has in that history. This gives the
set of possible values of f; consistent with the fact that f; has value v;. These
values are then given by the set

V2 = {f2(R) | h€ H,} which is equal to {fa(h) | h€e H & fi(k) =1}

5.3 Information Flow

The possibilities in V, determine whether the observer has learned a little or
a lot about his desired information function; the smaller the set, the more
he has learned. If the set V; is a singleton, then he has learned exactly
the value of his desired information; there is only one possibility consistent
with his observations. (If V; is empty, then he has made a mistake in his
calculations somewhere along the line.) When should we say that he has
learned nothing at all? Obviously if his observation has not helped him; if
the set of possibilities for f; in the restricted set of histories H; is the same
as the range of possibilities in the full set of histories H. This motivates the
following definition of “no information flows from f, given that f; has value

un":

No_Flow(fy; fi,v1) = ({f2(h) | h€H & fi(R) = v1} = range(fs))
This is immediately seen to be equivalent to the following definition:

NO..FIOU)(fz;fl,Ul) = thEH Jhe H [fg(h) = fg(hg) & f](h) = ‘01]

51

This definition can be taken to mean that every possible value of f; is con-
sistent with the observation that f; has value v,; nothing has been ruled
out.

Now, what does it mean to say that it is impossible for an observer with view
f1 to ever obtain information about the value of f;? It means that for all
possible values of f; there is no flow from f;. This is formalized as

Never_Flow(f,; f1) = Vhi €H[No_Flow(fa; f1, fi(h1))]

This can be unravelled into the following definition:

Never_Flow(fa; fi) = Vhy, ho€ HIReH[f2(R) = fo(h2) & fi(k) = f1(h1)]

This definition can be taken to say that there is never a flow from f; to f; if
and only if the two functions are independent; that is, if they can be assigned
values independently by the appropriate choice of the history A. This defini-
tion has one profound peculiarity: the Never_Flow relation is symmetric—if
there is never a flow from f; to f,, then there is never a flow from f, to
f1- This is a surprising result at first sight, since it is common to consider
information flow as having a direction (and without a sense of directionality
it is not clear that we have modelled information “flow” at all). Intuitively,
information flows from a data file to a user when the file is read, and flows
from a user to a data file when the file is written. However, in terms of
the inference model developed above it seems that in both cases information
flows in both directions; when a user writes a file, he knows something about
the file afterwards—namely, what he just wrote into it. Going a step further,
if someone knows the contents of a file, then he knows something about any
other user who reads the file: namely what that user read. This perhaps
unintuitive result will have consequences for the person wishing to use the
information flow model in a definition of security. We will see in the chapter
on event systems, chapter 9, that it is possible, with the proper interpreta-
tion of the information functions of the system, to reintroduce an intuitive
notion of “flow”.

52

5.4 Deducibility Security

The deducibility security for an information processing system can be defined
by giving the following objects:

1. H, the set of possible histories

2. F, a set of information functions on H

3. VCF, the set of views

4. hidden, a function from V into F

The first three items are familiar from the above discussion. The fourth item,
hidden, is a function which for each view gives what information should be
hidden from that view. In the case of multi-level security, there will be a view
for each user, and hidden might be the information which gives all information
whose sensitivity is greater than or incomparable to the clearance of the user.

The deducibility security of the system is then defined as follows:

Vf € V[Never_Flow(hidden(f); f)]

This definition says that information never flows into a view from the infor-
mation that should be hidden from that view.

In using the deducibility model it is necessary to decide

1. How should the histories be described?
What are the view functions?

What is the “hidden” information for each view?

e W

. Is deducibility security an adequate requirement for the security of
systems?

53

5. If not, then what additional requirement is needed?

In chapter 2 we argued that the answer to the fourth question is “no” if we
are considering nondeterministic systems or systems that will be hooked up
to larger systems. In the following chapters we will show how the general
theory of deducibility security can be instantiated for systems described as
processes, and how it can be strengthened to a hook-up security property
which is more adequate for our needs.

54

Chapter 6

Process Specification

One of the most common techniques developed to rigorously analyze the be-
havior of programs is to view a program as an algorithm for computing func-
tions of a data type. The advantages that lie in associating programs with
mathematical functions are many, chief among them being implementation-
independence and extensionality. To know how to use a program in conjunc-
tion with other programs one does not need to know how the program was
constructed (often a messy tale of “while” loops and assignment statements);
it is enough to know the extensional heart of the program: the function it
computes.

In an information processing system with many jobs executing concurrently,
the idea of a program as simply an algorithm becomes at best inconvenient
and at worst false. The most important objects in such systems are not
algorithms, but processes.

A process sometimes seems to compute a function. For example, a process
such as an interpreter can be thought of as computing and outputting to
the screen the value of the expressions input from the keyboard. However, a
process fails to be functional in two respects.

55

Dependence of Outputs on the Process History

The first reason that a process does not simply compute a function of the
inputs is that the output at a given time depends on the process history.
In the case of the interpreter, for instance, the value of an expression may
depend on the assignments made to variables many inputs ago. One way out
of this difficulty is to introduce the notion of the current state of the process.
In that case, the output at a given time is a function not of the last input,
but of the state. Such an approach for specifying the benavior of systems is
taken, for example, by S.D.C.’s Formal Development Methodology with the
specification language Ina Jo [Loc 80].

Powerful techniques have been developed by Floyd [Flo 67], Hoare [Hoa 69],
Gries [Gri 81}, Dijkstra [Dij 76], and others to combine algorithmic and the
state transformation notions of programs. The idea behind these techniques
is to view a program as describing the action of a state machine in which the
“states” are assignments of values to all the variables in the program. The
state transformations can be specified by statements, called “Hoare triples”,

of the form: {P}S{Q} which means: -

If predicate P holds of the state of the system initially, and pro-
gram S runs to completion, predicate @ will hold afterwards.

For a program to “run to completion” it must run until it terminates nor-
mally; i.e., without raising any error conditions.

Another way to view the process is as a means of computing not a function
of one input, but a function from the entire sequence of past inputs. In this
second view, a process is a function from streams (or sequences) of data to
streams of data. This change of emphasis, from single inputs to streams of
inputs, allows one to analyze programs such as operating systems which never

“halt” and so as algorithms only compute the totally undefined function. A
Hoare-triple such as { P}S{Q} is useless when S represents a program which
is intended not to halt; the statement “If S halts, then Q is true afterwards”
13 a vacuous statement in such a case.

56

Non-Determinism

Real processes fail to be functional in a second way; the output is in general
not completely determined by the input stream. Reasons for this nondeter-
minism include the lack of complete knowledge of the system and the presence
of inherently unpredictable timing effects arising from the interaction of many
entities: processes, devices, and users. This extra complication is manage-
able with the state machine approach of Ina Jo, or the Hoare-triple approach,
since it only involves introducing nondeterminism into the state transition
relations, those rules which describe which states may follow a given state.
However, the reasons which make the extensional view of programs attractive
also make state machines unattractive; a description of a process as a state
machine is not independent of implementation. Two processes which “do the
same thing” do not necessarily have the same state-machine description. Of
course, there are ways around this deficiency; one could develop a formal-
ism for defining what it means for two state machines to be observationally
equivalent, and then every state machine description could be understood
to represent an equivalence class of observationally equivalent processes. We
intend rather to follow the approach of Hoare[Hoa 85]. There, a process is
identified with its observable behavior from the start.

Processes As Event Systems

A process is an abstraction which is intended to capture the dynamic charac-
ter of a component of an information processing system. Although there are
some subtleties involved in choosing a sufficiently complete characterization
of a process(see [Hoa 85]), we will simply use the input-output relation for
the process.

A process is viewed as a “black box” into which one puts things and out of
which one gets things in response. For our purposes, we may as well regard
the “things” as messages or signals of some sort, but bear in mind that this
interpretation is unrecessarily restrictive; one may reasonably regard, say, a
Coke machine as a process with the input objects being coins and the output
objects being bottles of Coke.

57

We assume that the complete specification of a process involves giving a
complete set of events for the process and the set of its possible behaviors
as described by traces of the process. Here we only consider the events
corresponding to the input or output of some “thing”, and a trace is defined
to be a finite history of the process, giving the sequence of events in the order
they occurred. .

For our later discussion on the security of processes, it will be necessary to
make a clear distinction between input events and output events. Intuitively,
output events are under the control of the process, while input events are
controlled by some entity, such as a person or another process, which is
“external” to the process. To formally define the “cause” of an event is tricky,
but for our purposes it is sufficient to assume that while the output sequence
is constrained by the process’ specification, the input sequence is completely
unrestrained except for the type of the inputs. (In the Coke machine example,
one may put in any coins in any order, but one cannot choose to ignore the
type restrictions and input a credit card, or say, a banana. The size of the
coin slot enforces a kind of type restriction which cannot be circumvented
without damaging the operation of the machine.)

For the present discussion, we ignore the timing characteristics of the process.
In this untimed model of processes, the behavior of the process is completely
determined by the sequence of events involving that process. We assume
that events can be considered as atomic, so that no more than one event
may happen at a time. The time between events is ignored.

Note that by assuming that events are atomic, we are being restrictive to
some extent about what can reasonably be interpreted as an event. It is not
reasonable for realistic systems to assume that arbitrarily powerful opera-
tions, such as “transmit file”, can be atomic; in general, such actions will be
broken up into a sequence of smaller actions. In modeling a system at a high
level of abstraction, the modeler must keep the atomicity of operations in
mind; the reliability of the conclusions he reaches about the behavior of the
system are contingent upon the extent to which the actual system behaves
“as if” the complex actions are atomic and uninterruptable. It is neces-
sary to demonstrate that the actual implementation faithfully simulates the
high-level abstract view of the system.

38

Chapter 7

A Model for Systems

Our model for both processes and systems is the event system. Event systems
are based on the processes of Milner [Mil 80} and Hoare [Hoa 85]. For the
purposes of security, we only wish to consider two systems different if that
difference is manifest in a difference of behavior; that is, if there is a difference
in the traces, or possible sequences of events.

By basing our model of systems on the behavior of systems, we insure that
any definition of security for that model will be ostensible, and so two systems
which behave the same will be equally secure (or insecure). Also, as has been
shown by Hoare and Milner, the process model of systems (of which our model
is a special case) is very general, and can be applied at almost any level of
abstraction, and so our definition of security based on this model is similarly
level-independent.

In addition to the information needed to describe the behavior of the event
system, we also need to give information about the security aspects of the
system. We will call an event system together with the security rating of its
events a rated event system.

59

7.1 Possible Histories

For our purposes, then, a rated event system R is completely specified by
giving its event structure and its security structure. The event structure can
be described by the four sets (E,I,0,T). E is a set of events which includes
all signals exchanged between the system and the external world, as well as
all externally visible transitions of the system. I and O are disjoint subsets
of E, the input events and output events, respectively. T is the set of traces,
which are finite sequences of events representing the possible histories of runs
of the system.

Intuitively, inputs are events which are ezternally caused, and outputs are
events which are internally caused. That is, the system has no control over
what signals come in, and the external world likewise has no control over
what comes out. This idea can be illustrated by considering an example of
a personal computer as an event system. The inputs, in the simplest case,
are keystrokes, which are caused by the user typing at the keyboard. The
outputs are the characters displayed on the screen, which are caused by the
system.

We formalize the notion that inputs are “uncaused” by the system by requir-
ing that the set of traces T be closed under extension by an input—that is,
an input can occur at any time, and the system can never prevent an input
from occurring (but it may choose to ignore an input if it is not ready to
handle it). To formalize the notion that outputs are “caused” by the system,
we require that the outputs of a given system be inputs to any other system
to which the outputs are visible. In the example of a personal computer, the
outputs, which are the characters appearing on the screen, become “inputs”
to the user if he is watching the screen.

The interpretation of traces, as we have said, is that a trace represents a
history of the system up to some time, that history being described by giving
the sequence of events which occurred during it. The model has only “soft-
time”; that is, the relative ordering of events is given, but not the real-time
delay between events.

60

The choice of considering only “soft-time” properties is made for the sim-
plicity of the formalism. If one wishes to include real-time, it can be done
approximately by using “timing events” as follows:

e A special process, the “clock process”, is introduced which regularly
outputs timing events, or “ticks”, to every other process.

e Each other process has a characteristic time for each output, which is
expressed as the number of input “ticks” that must be received before
the output occurs.

The “ticks” are a way of simulating the passing of time. Such timing is
necessarily discrete, but by choosing a “tick” to represent a very small interval
of time (in other words, by requiring a very large number of “ticks” before
any process can make an output), continuous time can be approximated to
any degree of accuracy.

Using real time is not in general useful at the design level, since the real-time
behavior of a system depends sometimes critically on implementation details,
including hardware characteristics, which are not known at the design stage.
However, a real-time analysis could be used on a completed implementation
of the design.

7.2 Security Levels and Views

The security structure of a rated event system R which has the event struc-
ture (E,I,0,T) is given by the triple (L, <, lvl }, where L is a set of security
levels, < is the security ordering on levels, and Ivl is a function which assigns
a security level to each event in E. For this rated event system, we can, for
each level [, define the set of events, called the view, visible to that level:

vue(l) = {e< E | lteg{lvl(e),1]}.

61

7.3 The Information Contents of Views

For every view, or set of events, v and every sequence of events 7, we define
the restriction of 7 to view v (denoted by 7 T v):

7 T v is the subsequence of 7 formed by discarding all events
which are not in the set v.

For a set of sequences T", we will use 7/ T v to mean the set resulting from
taking the restriction to v of each sequence in T.

If a user is restricted to seeing only the events in view v, then 7 T v is all the
information available to that user during the history . The function which
takes a history T and returns the sequence 7 T v we will call the information
function of view v. Two histories which have the same restriction to view v
will look the same to that view. Thus we can form the equivalence class of a
trace T generated by view v as follows:

Il ={re T| " Tv=11v}

The information that flows from the source view v, to the target view v, dur-
ing history 7 can be determined by the following considerations (as described
in chapter 5) : If a user is not allowed to observe anything during history 7,
then the set of possible sequences of events consistent with his information is
of course just T. The set of possible values of the source information function
is T T v,. On the other hand, a user allowed to see view v, will be able to
deduce that the possible sequences of events consistent with his information
is ||7]|u, and the set of possible values of the source information function is
I7llve T vs. If information has flowed from v, to view v, in history 7, then
{I7llv. T v, will contain fewer possibilities than T T v,. (In the special case
in which all the information in view v, flows to v, ||7|ly, T v, will consist of
only one possible value. The user with view v; would then be able to deduce
ezactly what events took place in the source view v,.) If the two sets of
possibilities, T' T v,, and ||7||s, T vs, are the same, then no information will

62

have flowed from v, to view v;. .In this case the user with view v, will have
learned nothing through his observations that he could not have learned from
his knowledge of the system alone.

7.4 Deducibility Security

Now we can define illegal information flow for the rated event system R:

In every trace 7 in T, and for all levels [in L, no information
shall flow from the set of inputs outside of the view, I — vue(l),
into the view vue(l).

It can be shown that there is no illegal flow if and only if for every level [
and every trace T, there is a trace 7’ in ||7{|yueqy such that

o 1 (1 = vuell)) =

In other words, there is no illegal information flow for view vue(!) during the
history whose trace is 7 if it is consistent for a user with that view to suppose
that there were no inputs other than those visible to him. This form is often
more convenient for proving that there is no illegal information flow?.

7.5 Hook-Up Security

From the examples given in chapter 2, we see that information flow or dedu-
cibility security is quite fragile and context-dependent: systems which have

1A similar definition of security is given by Jacob[Jac 88]. His processes, however,
are general CSP processes[Hoa 85], which do not distinguish between inputs and outputs.
We believe that this distinction is crucial, since information only comes into the system
through inputs.

63

no information flows when isolated can be completely insecure when con-
nected with other systems. We therefore chose as our definition of security a
property called “hook-up security” which we proved (chapter 9) implies that

o If a system is hook-up secure, then it has no illegal information flows.

o If two systems are hook-up secure, and they are “hooked up” so that
some outputs of either system become inputs of the other at the same
security level, then the resulting composite system is also hook-up se-
cure.

Hook-up security therefore strengthens the information flow requirement in
such a way that systems will not develop new illegal lows when hooked up
with other secure systems. Hook-up security is a very strong noninterfer-
ence requirement; it requires that inputs are able to interfere with, or affect,
only subsequent higher-level outputs. (Goguen and Meseguer discuss a re-
lated noninterference requirement [Gog 84] for a more limited class of systems
than we are considering. In particular, their requirement only applies to de-
terministic systems.) We turn now to the task of ﬁndmg a suitable formal
definition of hook-up security.

64

Chapter 8

Noninterference and Hook-Up
Security

The informal statement of noninterference for the event system model that
we are using is the following:

A system S has the noninterference property if for any level
l and for any history of the system, the view at level | of that
history is unaffected by inputs that are not visible to that view.

What we would like to have is a property which is stronger than nonin-
terference and is preserved by composition or hook-up. Thus the stronger
property, which we will call “hook-up security”, can be defined informally
via a partially circular definition:

A system S; is hook-up secure if it has the noninterference
property and for any system S; which is also hook-up secure, the
composite system formed by hooking up S, and S, is hook-up se-
cure.

65

8.1 Why Care About Composability?

There are several reasons that a security engineer should care about having
a definition of security that is composable:

e Few systems are entirely stand-alone; there are always incentives to
hook small systems together into networks in order to share information
or computational resources. In anticipation of future connections, the
security engineer should make sure that whatever confidence he has in
the security of his system carries over to the new composite system.

o Even for a single computer system, there are in general components
which are partially independent, such as the disk drives, the CPU,
terminals and printers. An accurate treatment of any system might
require considering the interactions of several concurrent components.

¢ In the design of a large, complex system it may be easier to break up
the system design into smaller subsystems and analyze the security of
the components rather than try to prove the security of the system
as a whole, For this “divide and conquer” approach to be successful,
one needs a criterion for the security of the pieces which is sufficient to
guarantee the security of the whole.

e Through time-slicing, concurrency is simulated on a single processor,
and so a useful model for a system is that of several user processes and
the operating system running “semi-concurrently”. From the viewpoint
of this moav, it is not enough to consider the security of the operating
system alone; it is necessary to consider the interactions of the operat-
ing system with the other programs. Protection against “Trojan horse”
programs can thus be enhanced by considering the security of the oper-
ating system in the context of being hooked up to a collection of other,
possibly malicious processes. (The idea connecting composability of
security with protection against Trojan horses is due to John Millen of

Mitre.)

Given that it is important to consider composability in the security of a
system, the question becomes: what is a composable moc<l of security?

66

8.2 Weak Noninterference

Now, in order to work with definitions of noninterference and hook-up secu-
rity, we need to make them more precise by giving an unambiguous test for
determining whether a system has the noninterference property or whether it
is hook-up secure. In the following, we consider a series of precise definitions
of noninterference, each stronger than the last, culminating in a definition of
hook-up security. For each of the intermediate definitions, we demonstrate
that the definition is not strong enough to be a definition of hook-up security
by way of a counterexample; we exhibit two systems which individually meet
the definition but whose parallel composition fails to meet the definition.

A system is said to have the weak noninterference property if for every level [
and every trace 7 there is another trace 7/ having the same sequence of low-
level inputs and outputs (inputs and outputs with levels less than or equal
to l) as 7, but which has no high-level inputs (inputs with levels higer than
or incomparable with [).

Intuitively, a system is noninterfering if high-level inputs do not interfere
with low-level outputs. The definition of weak noninterference formalizes the
following argument: The high-level inputs in a trace do not interfere with
the low-level event sequence if the same event sequence is possible in a trace
with no high-level inputs.

8.2.1 A Flaw in Weak Noninterference

To simplify the discussion, we will consider the case in which there are only
two levels: secret and unclassified.

A problem with weak noninterference is that it is not strong enough to ad-
equately capture the notion that changes in outputs are caused by earlier
changes in lower-level inputs. We can see this by considering the following
system which meets the first definition but which allows secret inputs to
affect unclassified outputs.

67

Consider a system A which meets the first definition of noninterference, but
in an especially devious way. System A has a single unclassified event: an
output. It has a single secret input which it may receive on one of two
possible communication ports, which we will call the left port and the right
port, and also a single secret output. The secret output may occur at any
time, and since the system is input-total, it can also receive a secret input at
any time. An unclassified output may happen only if the earliest secret event
that occurred previous to that unclassified output, if any, was an output. A
legal trace of A is shown in figure 8.1.

Now, this system has the first noninterference property: given any trace, it
is possible to modify it by adding or deleting secret inputs and to “fix up”
the resulting sequence to a legal trace by modifying secret outputs. However,
a peculiarity of this system is that the modification of the secret outputs
sometimes needs to occur before the corresponding secret input. To see this,
consider the trace in figure 8.1. If a secret input is added to the trace ear-
lier than the unclassified output, then the result is the sequence pictured in
figure 8.2, which is not a legal trace. This sequence can, however, be “fixed
up” to get another legal trace by adding another secret output even earlier,
as in the trace of figure 8.3.

Thus this system does not seem to enforce the normal sense of causality;
adding a secret input seems to cause an output to appear in the past.

In figures 8.4, 8.5, and 8.6, we show corresponding systems of a second system
B, which we also assume has the first noninterference property.

We will assume that systems A and B have the same response to any secret
input; if there is an unclassified output in a legal trace, then the earliest
preceding secret event, if any, must have been an output. Described this
way, it seems that secret inputs have some kind of eff:ct on unclassified
outputs: if a secret input comes early enough in a trace, it will prevent an
unclassified output from occurring. However, since it is always possible to
“fix up” a trace by inserting the appropriate secret outputs, the secret inputs
do not necessarily interfere with the unclassified outputs.

Now, imagine connecting A and B in parallel. A legal trace of the combined

68

N\ /N
pa &
N\ AN
Figure 8.1: Original Legal Trace Figure 8.2: Add a Secret Input
of System A

/)
«—
U
AN

Figure 8.3: Another Legal Trace of System A

69

N
N 4
‘ N
N Ve
d
Y AN
Figure 8.4: Original Legal Trace Figure 8.5: Add a Secret Input
of System B

N\

NV

s
AAA

Figure 8.6: Another Legal Trace of System B

70

system is shown in figure 8.7. In this figure, each system makes its unclassified
outputs independent of the other, according to our convention that common
events are shown between the two timelines.

In figure 8.8, we add a secret input to system .A. Thus we do not have a
legal trace for the combined system; the sequence is legal as far as system B
is concerned, but not as far as system .4 is concerned.

In figure 8.9, we “fix up” the trace for system A by allowing the output which
corresponds to the input. By our convention, every output on the righthand
side of the timeline of system A is an internal event, which is an input to
system B. Thus the sequence shown in figure 8.9 needs to be “fixed up” for
B. In figure 8.10, we “fix up” the sequence for B at the cost of introducing a
new internal event, an input to system A, which must be “fixed up” in turn.

It is obvious that there is no way to “fix up” the trace for both A and B
simultaneously, so we must conclude that the addition of the secret input
to system A in figure 8.8 must necessarily interfere with the unclassified
outputs of the trace in figure 8.7. Therefore, the combined system does
not have the first noninterference property even though (by assumption) the
two component systems had the property. Thus, the first noninterference
property cannot serve as a definition of hook-up security; hooking together
two systems can destroy the noninterference.

8.3 Strong Noninterference

For a system that is weakly noninterfering, it is impossible at any time for a
low-level user to deduce that a high-level input occurred earlier. However, it
may be possible for a low-level user to deduce that an earlier high-level output
has occurred. Such a deduction is not in general a security violation—because
of write-ups a high-level output need not contain any high-level information.
Nevertheless, one could imagine strengthening weak noninterference so that
deductions by a low-level user about inputs or outputs is forbidden. We may
call this stronger property strong noninterference.

71

N\ /N
¢ —
A B

Figure 8.7: Original Legal Trace
of the Combined System of A and
B

e
—— >

)
_./\N\/\-}
f B

Figure 8.9: A “Fix Up” for A—
Not a Legal Trace for B

N AN\
— s
—"U'\/\-)

f B

Figure 8.8: Add a Secret Input to
System A

/] |
« N
—

Figure 8.10: A “Fix Up” for B—
Not a Legal Trace for A

Strong noninterference can easily be defined formally: For every possible
trace 7 of the system, the trace formed from 7 by deleting all high-level
events (inputs and outputs) is also a trace.

Doug Weber at Odyssey has proved that strong noninterference is a compos-
able security property. (In the example in figure 8.10, it can be seen that a
key feature of the systems that causes their composition to fail to be secure
is that both of the systems allow unsolicited high-level outputs to occur.)

Despite the fact that strong noninterference is a composable property, it has
several undesirable features:

¢ It forbids some systems that are obviously secure.

To see this, consider a system which simply upgrades information; it
repeatedly

1. Takes in a low-level signal.
2. Outputs the corresponding high-level signals.

3. Outputs the low-level message “done”.

Now this system is manifestly secure; it can’t possibly give away high-
level information to low-level users, since it never even receives any
high-level information to give away. The system fails to meet the re-
quirements of strong noninterference, however, because for every trace
containing the output “done”, it is impossible to remove the high-level
outputs and still have a legal trace. This shows that strong noninter-
ference is an excessively strong requirement of systems.

e It is not preserved by upgrading outputs.

Intuitively, upgrading outputs (increasing their security level) on a se-
cure system should leave the system secure; there is less information
available to low-level users than before. However, such an upgrade can
change a system which obeys strong noninterference into one which
does not, since the transformation may produce new unremovable high-
level outputs.

73

o It permits systems which are intuitively insecure.

Consider once again the system described in section 2.1.1. As you
recall, it had the following characteristics:

— There are two possible low-level input commands: begin_eavesdrop
and end_eavesdrop.

— If the low-level user issues begin_eavesdrop, and then at a later
time issues end_eavesdrop, the system will respond by repeating
to the low-level user the sequence of inputs made during the period
between low-level commands, if any.

— If no high-level inputs are made at all between begin_eavesdrop and
the following end.eavesdrop, then the system will send to the low-
level user a fake response made up of randomly selected outputs.

This system obeys strong noninterference and is deducibility secure;
a low-level user can never deduce with certainty that any high-level
inputs at all occured. The system is nevertheless intuitively not secure,
since there are circumstances in which the low-level user can be given
high-level information.

For these reasons, we will reject strong noninterference as a candidate for a
definition of hook-up security

8.4 Generalized Noninterference

We can try to correct the flaw in the first definition of noninterference by
trying to make the relationship between inputs and outputs more causal—
that is, we require that changing an input can only affect later outputs, and
then only outputs of greater or equal level than that of the input changed.
We thus modify our thought experiment for determining whether a system
has the noninterference property:

o Take any legal trace m; of a system S.

74

e Break 7, into two pieces a and B, such that a”f; = ;. (The sequence
a’B, is the sequence « followed by the sequence f3;.)

e Modify 7; by inserting or deleting secret inputs in part $;, to form a
new final part 3. The new sequence, 72, is equal to o’ f;.

e S has the generalized noninterference property if and only if for any
such 7, and 7, there is a legal trace 73 which differs from 7, only in
secret outputs, and only in the final part of 7,. The trace 3 is of the
form a"B; where B differs from B, only in secret outputs.

For 2 system obeying this definition, if a legal trace of the system is modi-
fied by changing secret inputs, it should always be possible to “fix up” the
resultin g sequence to make it a legal trace by only changing later secret out-
puts. This definition is closer to our intuitions that an effect should follow
its cause; then we can say that the effect of the secret input change is the
resulting secret output change.

8.4.1 A Flaw in Generalized Noninterference

Generalized noninterference has one thing in its favor—according to it, the
strange systems A and B described above do not obey generalized noninter-
ference. We might then expect that any two systems meeting this stronger
definition of noninterference will be such that hooking them up will preserve
the noninterference. However, generalized noninterference, like weak nonin-
terference, is not in fact strong enough to serve as a definition of hook-up
security. This can be seen through the next example. Once again, we will
call our component systems A and B, but they will be improved models
compared with the earlier systems with those names.

Let A be a system obeying generalized noninterference. System A has two
secret inputs, one from a left channel and one from a right channel, and one
secret output, which is sent out the right channel. It has three unclassified
outputs: stop_count, even, and odd, with the first one being sent out the
left channel, and the other two being sent out the right channel. System

75

A works as follows: the secret output and the event stop_count can occur
at any time. The event even can only occur after stop_count, and only
if the total number of secret inputs and outputs earlier than stop_count is
even. Similarly, odd can occur only if the number of secret events earlier than
stop_count is odd.

Figure 8.11 is a legal trace of system A with an even number of secret events.
In figure 8.12 the sequence is modified by adding a secret input. This is no
longer a legal trace, since there is now an odd number of secret events. In
figure 8.13 the sequence is “fixed up” to a legal trace; a later secret output
is added to bring the total number of secret events back to an even number.

It is clear that system A meets generalized noninterference: any modification
of the secret inputs to a trace can be “fixed up” by adding or deleting the
appropriate number of secret outputs, while leaving the unclassified events
alone.

Let B be a second system with behavior almost identical to that of system
A, the differences being that

o For B stop_count is an input and not an output.
e The secret outputs of B are sent out the left channel of system B.

e B can only receive inputs from its left input channel.

However, like system A, secret outputs can occur at any time, and the un-
classified events even and odd depend on the total number of secret events
occurring before stop_count.

Figure 8.14 shows a legal trace of system B and figure 8.15 shows a modifica-
tion of the trace by adding a secrct input. Figure 8.16 shows a corresponding
legal trace, in which an additional secret output occurs to compensate for the
secret input. Since the effect of any secret input ~an be compensated for by a
secret output, System B, like system A, has the generalized noninterference
property.

76

N /N
Eeuen | even
RN N
7 4
stop_count , stop-count
—/\./L/\.a
Figure 8.11: Original Legal Trace Figure 8.12: Add a Secret Input;
of Improved System A Not a Legal Trace

A
even

\
stop_caunt 7

J\nJhﬁJ>

.._/'\.f\/\-)

Figure 8.13: Another Legal Trace of A; the Secret Input has a Response

77

AN /N
N _ >
even 7 even
stop.count”’| stop-count
Figure 8.14: Original Legal Trace Figure 8.15: Add a Secret Input;

of System B Not a Legal Trace

even

stop-count

4.&1\/1/\-——-
A

Figure 8.16: Another Legal Trace of B; the Secret Input has a Response

18

Now, if we connect systems A and B, then a possible legal trace of the
combined system is shown in figure 8.17. Here there are an even number of
secret events for each system: zero. In figure 8.18, we add a secret input to
system A. The result is no longer a legal trace, since there is now an odd
number of secret events on system A, although the unclassified output says
even. In figure 8.19, we allow A to respond by making a secret output. This
output happens to be an internal event of the combined system, and so is an
input to system B. This sequence is still not a legal trace, since now B has
an odd number of secret events. In figure 8.20, we allow system B to respond
by sending out a secret signal which is an input to system .A, to which A
must respond in order to have a legal trace.

It is clear that it is impossible to simultaneously “fix up” the trace for both
A and B and still have both systems output even; there must always be
exactly one leftover secret input for either system A or system B. For the
combined system the addition of the secret input in figure 8.18 necessarily
interferes with the unclassified outputs of figure 8.17: it is impossible to “fix
up” the sequence in figure 8.18 to make a legal trace without changing those
unclassified outputs. Thus the combined system does not obey generalized
noninterference, even though the component systems do. Generalized non-
interference thus cannot serve as a definition of hook-up security.

8.5 The Definition That Works: Hook-Up
Security

The problem with generalized noninterference is apparent in figure 8.16: to
“fix up” the trace of system B it is necessary to have a secret output occur
before the next unclassified input. However, system B is no more able to
control inputs than it is able to change the past. Therefore, in some cases,
the “fixing up” is beyond the control of system B and so it never gets done.
It is thus possible for an unclassified input to come when the system is not
ready for it.

We therefore propose one more noninterference property, which we call “hook-

79

/N /N AN AN
AN
e-—— pd
even even 7 S guan evern?
stop_count stap-count
: B A B
Figure 8.17: A Legal Trace of the Figure 8.18: Add a Secret Input
Combined System to A; Not a Legal Trace for A
N N N AAN
even even even even
stop-count 7] stop-count K
NS | F-J-\/\J\f\J\/'\—%
A B A B
Figure 8.19: A “Fix Up” for A; Figure 8.20: A “Fix Up” for B;
Not a Legal Trace for B Not a Legal Trace for A

80

up security” in expectation that it continues to hold when two systems are
combined, or hooked up, to form a composite system. To be hook-up secure,
the system must be able to “fix up” a trace following a change of secret inputs
even if there is no time to do so before unclassified inputs occur. This means
that regardless of the secret processing that needs to be done, the system
must respond to any unclassified input in the same way.

When is a System Hook-up Secure?

o Take any legal trace 7 of the system.

e Break it into three segments «, f;, and 7, such that o*$,*y, = 7, and
such that B3, is a sequence of inputs.

e Modify 7, by inserting or deleting secret ihputs in f; and ¥ to form
sequence T, = o’ B y,.

¢ S is hook-up secure if and only if for any such 7, and 7, there is a legal
trace 73 of the form a”f;"y3, where 43 differs from v, only in secret
outputs.

(Note: actually it is sufficient to only consider sequences such that
1 and «; have no secret inputs. This is the form used in chapter 9.
It is also sufficient to consider sequences f§; and S, with at most one
unclassified input and at most one secret input.)

This definition is a further generalization of noninterference—instead of say-
ing that no change of single secret inputs may affect the future unclassified
behavior of the system, we say that no change of the secret portion of any
sequence of inputs may affect later unclassified behavior.

Looking once again at figure 8.16, we see that since the secret response to the
secret input necessarily happens before the unclassifiedinput, system B is not
hook-up secure; if it were, then it would have been possible to make the first
changed secret output occur after all the inputs immediately following the
secret input. If this had been the case, then there would have been another

81

J

even

{/\/\/\N‘\J_

stop.count

M

Figure 8.21: A Legal Trace for a Hook-Up Secure System B—The Secret
Output Comes A fter the Unclassified Input

N N

/]
{./\/\/\/\/L/_— even _
<%_____

even

stop-count
RV VPV

f B

Figure 8.22: A Legal Trace for the Combined Hook-Up Secure System

82

legal trace of B as shown in figure 8.21, and correspondingly, there would have
been a legal trace of the combined system as shown in figure 8.22. (Note: it
is possible for two hook-up secure systems .A and B to be combined into a
system in which a secret input initiates a nonterminating exchange of secret
signals between A and B. If the component systems are hook-up secure then
this infinite exchange cannot interfere with the unclassified processing. The
unclassified processing must be done in the gaps between secret processing.)

It seems that the hook-up security fixes the flaws in the earlier noninterference
definitions; it is plausible that two hook-up secure systems when hooked up
in parallel form a hook-up secure composite system. (It is not necessary
to stop at two systems; any number of systems can be hooked together by
hooking up the first two to form a composite system, which is then hooked
up to the third, and so on.) To be sure that hook-up security works this way,
we need to prove it, as we do in chapter 9.

8.6 The Security Model and Its Properties

As stated in chapter 1, the requirements we had for a definition of security
included:

1. Ostensibility—Security should be a property of the behavior of systems,
and not of the way that behavior is implemented.

2. Description-Level-Independence—The security property should be us-
able at many different levels of detail of system descriptions.

3. Context-Independence—If a component is shown to be secure, it should
be usable in any context requiring a secure component. In other words,
it should be possible to be able to hook up secure components in a
variety of ways without destroying security.

The first two requirements were addressed by using the event-system model
described in chapter 7. We can only have confidence that the last requirement

83

is addressed by proving that our formal definition of hook-up security has
the hook-up property. We turn to the next chapter for a formal definition
of hook-up security and the proof that it works as a context-independent
definition of security.

84

Chapter 9

Event Systems and Hook-Up
Security

In this chapter, we give formal definitions for the event systems and rated
event systems which were discussed informally in chapter 7. We define the
property called hook-up security and show that for deterministic systems,
hook-up security implies Goguen and Meseguer’s noninterference property
for multi-level systems. We show that two systems which are hook-up secure
and which assign the same level to those events common to the two systems
can be hooked up to form a composite system which is hook-up secure.

To define the notion of hook-up security, we first define the notion of a
restrictive view of a system. Intuitively, a view of a system is restrictive if
no information leaks into that view from sources outside the view. Having
defined a restrictive view, we define a system to be hook-up secure if the view
associated with each security level (determined by the set of events that can
be observed by users of that level or less) is restrictive. This captures the
idea that no information should flow into the view associated with one level
from the views associated with higher levels. The hook-up theorem is proved
for the more general notion of restrictive views, and so is not limited to
multi-level security.

85

9.1 Preliminary Definitions and Notation

Notation for Sequences

¢ () = the empty sequence
¢ (e) = the sequence consisting of a single occurrence of event e
e o”*f = the concatenation of sequences a and

e a C f denotes that a is an initial segment of B, or alternatively,
eztends . In other words, for some §, a™6 = 8.

o a [C B denotes that « is an initial segment of # and that « is not equal
to B; alternatively, B is a proper eztension of a.

aldfepCa

adfefCa

Notation for Sets

e A* = the set of all finite sequences of events in A
o AU B = the union of A and B
e AN B = the intersection of A and B

e A — B = the set of all elements of A which are not elements of B

Definition 1 For all a € E* and E’ C E, we will denote the restriction of
a to set E' by a 1 E'. We define this recursively as follows:

OTE =()
BMe) 1 E'=(B1EYe) providedec E'
BMe)TE'=B1E otherwise

86

9.2 Definition of an Event System

Definition 2 An event system ES is a structure (E,I,0,T), where E is a
set of events, I and O are disjoint subsets of E, the input events and output
events, respectively, and T is a set of traces, the legal finite sequences of
events in F.

Let ES, ES,, and ES; be the event systems (E,I,0,T), (Ey, ,,0,,T1), and
(Ea, I, O,, T;), respectively in the following.

9.3 The Simple Hook-Up of Event Systems

If one takes two systems running in parallel and allows them to communicate
by exchanging events, then this composite system can be said to be a parallel
composition or hook-up of the component systems.

Definition 3 We will say that ES is a simple hook-up of ES; and ES, if the
following conditions hold:

E = EIUEz
I = (h-0)U(l,—0y)

0 = (01-1L)U(0,—I)
nnl, = {}
0.n0; = {)
(B,—L-0)NE = {}
(Br—L-0)NE = {}

T = {aEE‘laTEleTl&aTEgeTg}

87

9.4 Multi-Level Security for Event Systems

Definition 4 A security structure SS for an event system ES = (E,I1,0,T)
is a structure (L, <,lul), where L is a set of security levels, < is a partial
ordering on L, and lvl is a function from E to L, assigning a security level to
each event.

Definition 5 A rated event system RES is a structure (E,1,0,T, L, <,lvl),
~ where ES = (E, 1,0, T) is an event system, and SS = (L, <, Ivl) is a security
structure for ES.

Let SS=(L,<,lvl), 881 = (L1, <1, 0h), and SS; = (L, <3, lvl;) be secu-
rity structures for ES, ES;, and ES,, respectively in the following.

9.5 The Hook-Up of Two Rated Event Sys-
tems

Definition 6 Let RESbe therated event system (L, 1,0,T, L, <,lvl), RES,
be (El, Il) Ola Tl) Lla Sla Ivll >’ and RES2 be (E27 I27 02’ ‘21 L21 S?r IUIZ)- We
will say that RES is the simple rated hook-up of RES, and RES; if

¢ ES is the simple hook-up of ES; and ES;.

e L, is a subset of L.

e L, is a subset of L.

o <; is the restriction of the relation < to L,.

e <, is the restriction of the relation < to L.

88

e Ivl; is the restriction of the function lvl to E;.

e lvl; is the restriction of the function /vl to E,.

9.6 Restrictive Views

Definition 7 A set of traces T will be called input total if it is closed under
extension by inputs. That is:

Vae T,Vz€ I,(a"(z) € T)

If a system is input-total, then any input can always come at any time.
Therefore, for such systems, no information is given to the sender of a signal
by the fact that the signal is accepted, since it is always accepted, and so
information only flows from the sender to the receiver.

Definition 8 A set of traces T will be called event-separable if they are
closed under taking initial segments. That is, if

Va€ E*,\Vee E,(c"(e) € T = a€ T)

The intuitive idea behind this definition is that a trace is supposed to rep-
resent the input-output history of the system up to some moment in time.
Therefore, if a”(e) is a trace, and the event e can be separated in time from
the events in o, then there must have been a moment before e took place
and after all the events in o took place. Thus a is a possible history.

In the following, we will consider only event systems with input-total and
event-separable sets of traces.

Definition 9 We will use the word view to mean any subset of E.

89

This definition is motivated by the fact that any subset of events v defines
an information function, or view of the set of traces:

Flir)=11Tv

Two traces appear the same to view v if they differ only by events which are
not in v. We will refer to events that are not in a view v as hidden events for
that view.

Views for Multi-Level Security For a rated event system, the important
views are those associated with the set of all events less than or equal to a
given level:

Definition 10 Let vue be a function which takes a level and returns a subset
of E such that:

vue(l) = {e€ E | bl(e) < 1}

For each level I, vue(l) is the set of events which can be legally seen by users
of level .

Definition 11 A set of traces T will be called deterministic if for all a€ T,
there is at most one e € E — I such that a™(e) € T. That is, at any time,
there is at most one output or internal event that may come next.

This definition contrasts with Hoare’s definition of a deterministic process

[Hoa 85].

9.6.1 Restrictiveness

We would like a composable noninterference property on views which cor-
responds to the hook-up security defined in chapter 8. We will define a
seemingly weaker property, called restrictiveness, such that:

90

If a view v of a system is restrictive, then for any legal trace,
the last consecutive sequence of inputs may be modified by chang-
ing only inputs not in the view, and there exists another legal
trace which differs from the modified trace in later outputs out-
side the view.

This operation is pictured in figures 9.1, 9.2, 9.3, and 9.4.

Definition 12 A view v is said to be restrictive if for all a € T, for all
B, B2 € I*, and for all v, € E*, if

ah™ € T
BiTv = B2tv
nTI-v) =)
then for some v, € E*,
a"By, € T
2Tv = mlv
nTI-v) = ()

9.6.2 A Fact About Restrictive Views

If a view is restrictive, then at any moment in any possible trace it is im-
possible for future inputs hidden from that view to interfere with the future
sequence of events visible to that view. As shown in figures 9.5 and 9.6,
this fact makes it possible to “strip” away all the hidden inputs from a trace
starting at one point and to leave the visible events unaffected. In this figure,
hidden events for the view are depicted with wavy lines, and visible events
are depicted with straight lines.

This property will be important in the proof of the hook-up theorem of the

next section. In the remainder of this section, we give a formal statement of
this property and its proof.

91

L

B

7

B2

— —— — —

Figure 9

il

___>.
NNAS

—— C—— — om—— -

.1: Original Legal Trace

Figure 9.3: Another Legal Trace
Must Exist with Only Outputs

Not in v

Modified

(
N\
Y M
_—__J _____
f | ——
k/'\f'\/‘\/—>
—_—
/_/\./'\/>
a 1-—-——%
W

Figure 9.2: The Last Sequence of
Inputs is Modified (Keeping the
Inputs in View v the Same)

AVAVAWa

event not in v

N
7

event in v

Figure 9.4: Legend
92

— — — — — f— — — — — S— — —— — — — fpr— ot —

(/
A avavas RPAVA VA
K v
N>
\ \
Figure 9.5: Original Trace Figure 9.6: New Trace with Hid-

den Inputs Stripped Away

Theorem 1 Let v be a restrictive view of event system ES = (E,1,0,T),
and let a and v, be elements of E* such that a™y, € T. Then for some
72 € E*, the following holds:

aty, € T
T2Tv = Mmtv
12TI-v) = ()

Proof:

We prove the theorem by induction on the length of 7, T (I — v).

Base Case: 1 ([—-v)=()

In this case, we can let v, be 7.

93

Inductive Hypothesis: For all y€ E*, if the length of v T ({ — v) is less
than or equal to n and oy is in T, then there exists a 9/ € E* such that
Ytv=ytvandy T(I-v)=().

Inductive Step: If the length of 43 T (I —~v) is n+1, then we can write 7,
as 8,"(e)"6,, where §; T (I — v) is of length n, and e is an element of I — v,
and é; T (I — v) is equal to {). Then we have:

a’6,Me)s; € T
(e) e I
(e I

(&) Tv = (Tv
T1I-v) = ()

Since v is restrictive, we can use the definition of restrictiveness, definition 12,
with the following instantiations:

o By (e)

o a+— b

o By)

e 76

Thus there exists a sequence v; € E* such that

a"6M)yy € T
2Tv = 6Tv
2TUI~v) =)

Now, the length of 6,4 1 (I—v) is n, so we may use the inductive hypothesis.
Thus, there exists a 42 € E* such that

94

aty, € T
2 Tv = 8§, T v whichisequal toy Tv
TT({I-v) = ()

This completes the proof. O
Corollary 1 Let v be a restrictive view, and let o; be an element of T.
Then, for some a,€ T,

aztv = o fv

of(-v) = ()

This is a special case of theorem 1, in which a = (), and v; = a;.

9.6.3 A Strong Form of Restrictiveness

In the definition of restrictiveness, there was the requirement that only the
last consecutive sequence of inputs be modified. It is easy to remove this
limitation, and thus come up with a seemingly stronger property:

Definition 13 A view v is said to be strongly restrictive if for all a€ T, for
all 8,,B;€ I*, and for all v1,v, € E*, if

a'p™n €T
BiTv = f2Tv
ntv = n2Tv

then for some 5 € E*,
a™B™My €T
©21UUv) = 12T Uv)

95

With this stronger property, if a view v is restrictive, then it is possible
to modify a legal trace in any maaner, as long as the events in the view
are left unchanged, and there will be another legal trace which differs from
the modified trace only in outputs outside the view. Although this strong
restrictiveness seems stronger than restrictiveness, it is easy to prove that
the two properties are equivalent. This proof will not be given here in detail,
but informally, if a view is restrictive, then it is possible to modify the inputs
in a legal trace by the following procedure:

1. First, using the results of section 9.6.2, one can remove all the inputs
outside of the view, starting at an arbitrary point in the trace.

2. Second, a different sequence of inputs outside the view can be added
back, starting at the first point of modification and working one’s way
out. Because the later inputs outside the view have been stripped away,
it is always possible to use the weaker version of restrictiveness.

Because the two forms of restrictiveness are equivalent, we will use the weaker
form, since it is easier to work with formally.

9.7 The Hook-Up Theorem

In this section we prove that for a view of a two-component system to be
restrictive, it is sufficient that the corresponding views for each of the com-
ponent systems be restrictive.

We will assume that v is a restrictive view of event system ES, and that ES
is the simple hook-up of ES; and ES,. We will also assume that v is a view
of ES such that v; = vN E is a restrictive view of ES), and v, = vN Ey is a
restrictive view of ES,. An important property of the sets v; and v, is that
vlﬂE2=vgﬂE1.

96

9.7.1 Merging Component Histories

Let OK_SO_FAR be a subset of E* x EJ x E] x v* defined as follows:

OK—SO—FARE {(0,71,")‘2,7) I ! T (Il - ‘01) = () &
(a 1 El)A’hé T\ &
ntu=7TE&
'72T(Iz—02)=()&
(el E)*neTh &
T2 Tva=91E}

We can imagine trying to form a trace of the composite system as follows:
First we split the system apart and form traces for each component system,
and then we try to merge the two traces of the component systems to get a
trace of the composite system. In this section we will show that if we have
histories for each component system which agree on some initial segment a
and agree on the common events in view v for the rest of the history, then it
is possible to merge the two histories into a single history for the composite
system with the same common initial segment and the same sequence of
events in view v thereafter. This operation is illustrated in figures 9.7 and

9.8.

The progress made towards a composite trace can be coded by an element
(o, 11,72,7) of OK_SO_FAR: « is the trace of the composite system that we
have created so far, 4; denotes the events that we still have to account for
on the first system, -, denotes the events we still have to account for on the
second system, and + is a possible extension of a for the composite system
which gives constraints on the way events from the two systems are to be
merged. If the constraints are satisfiable, then we are okay so far, and if we
can make progress towards making a longer, then eventually we will have
our composite trace. The constraints are requirements that the composite
trace must look a particular way to view v. The next few theorems show
that progress can be made.

Theorem 2 Let (a1, m1,72,{e)*y) be an element of OK.SO_FAR. Then
there ezist a; € E*, 112 € E}, and 4,22 € E3 such that

97

——_‘———-—-———-h—_‘—.——

Figure 9.7: Partially Merged His- Figure 9.8: Merged Histories;
tories Events in v Left Unchanged

(1 a2, m2,722,7) € OKSOTFAR
QgTv = (6)

at(I-v) =

This theorem says that it is possible to take events from the fourth component
of an element of OK_SO_FAR and move them to the first component. Since
the fourth component tells us what we still have lcft to accomplish, and the
first component tells us what we have already accomplished, this theorem
says that progress is possible.

Proof:

Event e must be in v. Therefore, by the definition of simple hook-up, e must
cither be an event of one component system exclusively, or it must be an

98

event which is an input for one system and an output for the other. The
proof then divides into the following cases:

e € vN(E - Ey) (9.1)
e € vNONL (9.2)
e € vN(E - E) (9.3)
e € vNO NI (9.4)

Cases 3 and 4 are obviously similar to cases 1 and 2, so it is sufficient to
consider only the first two cases.

Case 1l e€c vN(E, — E,)

By the definition of OK_.SO_FAR, 1, T v; = ({(€)*v) T E;, so we can write 7,
as 11™(e)* 2, where 713 Tvy = () and 7,2 T v; = T E;. Since, by defini-
tion Of OK.‘S'O.FAR, 951 T (Il—vl) = (), then M, T (Il - ‘Ul) =M. T Il = ()

Therefore, v;,, consists of outputs and internal events for system ES,. Since
all events common to systems ES, and ES; must be inputs for one system
and outputs for the other, we can conclude that v;,"(e) 1 E, consists of
inputs to system ES,.

Now, we have the following facts:

* 1T (L-v)=()

o (m TE)()'nel

o Jel;

o (maMe)) T E2€ 13

* (ma™e)) T E2) T vz = () which is the same as () T v

Therefore, since v, is a restrictive view for system ES,, we may use defini-
tion 12 with the instantiations:

99

e amra T E;
* B ()
g :B?H(711A(e))TE2

L W die |

Therefore, there is a 122 € E3 such that

(e T E)M(ma™e)) T E2)™ 22 € T
72,2 Tvy = 21w,
Y22 T (la—v) = ()

By definition of OK_SO_FAR,

((alA‘Yl,lA(e)), TM.2:72.2:7)
is an element of OK_SO_FAR. Also, we have

naMe) Tv = (e)
71.1'\(3) TI-v) =)

as claimed. (The last two points follow from the facts that v N E, = v, , and
(I = v)NE, is a subset of (I} — v;).)

Case 2 ecvnNO, N1,

Since 7; T v = ((€)"v) T E, we can write 7, in the form v;,"(e)"7; ,, where
Y2 Tv2=(),and 755 T v3 =71 Ez. Since 5, 1 (l—vs) = (), by definition
of OK.SO_FAR, and ~;; 1 v = (), then we have 75, T I, = (). Thus 73,
consists of outputs and internal events for system ES,. Since every event
common to systems ES; and ES, must be an input for one system and an
output for the other, we can conclude that v5; T E,, which is the subsequence
of 73, containing events common to the two subsystems, must consist of only
inputs for ES,. Since it contains no events in v, it must contain events in
I 1 — Vg

100

Now, we have

(a TE)™n € Th

1T (h—wn) ()

7;,1 TE € It
(aTE)To = () Tu=()

Therefore, since v, is restrictive for system ES,, there must be a 4; € E; such
that

(a1 EI)A(’)';J TEI)A’Y; € Th
N1(h—un) = ()
Nt = ntu
Since i Tvi =7 T v={)"y 1 Ep), it must be that 4| can be written
as 71,1A<3)A71,2, where v;; T v1 = (), and 112t vy =4 1 E;. By similar

arguments as in the last paragraph, we can conclude that (y,,"(e)) T E; is
an element of I3, and (;,™(e)) T v; = (e).

Turning back to system ES,, we have

(a1 T E2)" 1. Me) ™1, € T

(e} € I3

(ma™e)TE; € I
(ma™Me) TE) Tv; = (e) Tvy=(e)

T2 T(k—v) = ()

Therefore, since v, is restrictive for system ES,, there is a 4,5 € E3 such that

(ar 1 E2)A7;,1A((71,1A(5)) TE) 12 € T
Y22 T (2 —v2) = ()
Y2Tve = Y2 Tva=vTE;
If we let a; be v5,"1,1"(e), then we can see that (a;"az,712,722,7) is an

element of OK_SO_FAR, and a; T v = (€), and a; T (I ~v) = (), as claimed.
O

101

Theorem 3 Let (a,71,72,7) be an element of OK_SO_FAR. Then for some
o' € E*, € E}, and ;€ E3

(a"a’ﬁi,'r;,()) € OK_SO_FAR

dtv

Y
1(I~v) =)

This theorem says that we can eventually move all the events from the fourth
component of an element of OK_SO_FAR into the first component.

Proof:
We prove the theorem by induction on the length of .

Base Case: v ={)

In this case we can let o = (), 71 =11, and 75 = 7a.

Inductive Hypothesis: For all ap€ E*, 110€ E}, 120 € E3, and yo € v*,
if

o the length of 4 is less than or equal to n
- (ao,71,0,72,0,7) i8 an element of OK.SO.FAR

then for some a; € E*, 4,1 € E}, and 1., € E3,

e {ao"a1, 11,721, ()} is an element of OK_SO_FAR
eaTv="

ey T (I-v)={)

102

Inductive Step: If the length of v is n 4+ 1, then we can write v as
(€)™, where the length of 7o is n. Then we have that {a, 71,72, {€)"0)
is in OK_SO_FAR. By Theorem 2, there exist ap € E*, 71, € Ej, and
Y30 € E3 such that (a"af,] 073,00, 70) is in OK_SO_FAR, af T v = (e}, and
a T (I—-v) = (). Now, since the length of 4o is n, we can apply the inductive
hypothesis, which gives us the existence of of € E*, 71 € E3, and 7; € E3
such that

o (a"ap"al, 1,7, ()) is in OK.SO_FAR
ey Tv="

ey T(I-v)=)

Thus, letting o/ = af"a}, we have

o {a"a’,¥,,7}, () € OK_SO_FAR
oo Tv=(e)" =17

e/ 1(I-v)=)

This completes the proof. O

Theorem 4 Let (o, 71,72,7) be an element of OK.SO_FAR. Then for some
o' € E*,

o (", (),(),()) is in OK.SO_FAR
e dTv=9y

o T(I-v)=)

103

This theorem says that we can eventually eliminate all the events in the last
three components of an element of OK_SO_FAR. Since these components
told us what we still had left to accomplish towards merging traces of the
constituent systems into traces of the composite system, this theorem says
that we can eventually succeed, and that the first component is the merged
composite trace.

Proof:

By Theorem 3, for some o' € E*, v, € E}, 7, € E;, ("o, 71,73, ()) is an
element of OK_SO_FAR, and o/ fv=9,and o T (I —v) = (). Then it is
sufficient to show that (o, (), (), ()) is also in OK_SO_FAR.

o (a"a™)) 1 Ey is in T, since (a”a’y}) is, and the set of traces is closed
under taking initial segments

e Tv=(1E

o (a"a™()) 1 Eyisin T,

e)Tv=(1E

e)1 (Li—w)=()

o)1 (h—wv)=()

We can see that {a"d/, (), (),{)) is an element of OK_SO_FAR. O
Theorem 5 With ES,, ES,, ES, v, v,, and v, as above, v is a restrictive

view of system ES.

104

Proof:

We need to show that for all c € Ej, € I*, 8/ € I*, and v € E*, if
Btv=pF 1v,and a*Byisin T, and v T (I — v) = (), then there exists a
v’ € E* such that

7Tv = 710
Y1UI-v) = ()
O!Aﬂ”\"y’ € T

Let a, B, B, and 4 be sequences meeting the above conditions. Since o”f"y
isin T, then (¢"8%y) 1 E; is in T}, and («™f"y) T Bz is in T3.

Let us define the fbllowing sequences:

oalzaTEl

e JL=BTE,
e /I=FTE
en=vTE
sax=al k,
e =B1E;
* B=F1E,
072§7TE;

Then we have

a’h’™n € Ty
bh € I}
ﬁ{ To, = Bty

Because v, is restrictive, we can use Theorem 1, with the following instanti-
ations:

105

o a ay"p

eMm—

Thus there exists a 9] € Ey such that
b € T
nto 7 Tu
nth-un) = ()

Now we can use the definition of a restrictive view, definition 12 with the
instantiations

s aray
e /B
° b B
N

to get a 7y € Ej such that
A g™y € Th
Hlo = nTus=nln
HWTh-w) =
Likewise, there is a 75 € E; such that
"By € T
2T = 12T
2T (h-vn) =

Checking the definition of OK_SO_FAR, we can see that (@B, Y75, Tv)
is in OK_SO_FAR. By theorem 4, there is a 4' € E* such that

(™8™, (),(),()) € OKSO_FAR
TTv = 77v
Y1(I-v) = ()

106

Since (a"#'™y') 1 E, is an element of T}, and (a™8"*y') T E; is an element
of Ty, then by the definition of a simple hook-up, definition 3, «*8*y’ is an
element of T. Thus 4’ is the desired sequence needed for our proof. O

9.8 Hook-Up Security for Rated Event Sys-
tems

Definition 14 A rated event system RES = (E,I,0,T,L,<,lvl) will be

said to be hook-up secure if for all € L, vue(l) is restrictive.

Definition 15 We will say that RES has the Goguen-Meseguer noninterfer-
ence property ! (or G-M property for short) if the set of traces T is determin-
istic, and for all /€ L and for all t€ T, there is a t'€ T such that

o t' T vue(l) =t T vue(l)

o 1 (I - vue(l)) = ()

Theorem 6 If RES is hook-up secure, and its set of traces T is determinis-
tic, then it has the G-M property.

Proof:

This follows immediately from Corollary 1. O

Theorem 7 IfRES is the simple rated hook-up of component systems RES,
and RES;, and the components are hook-up secure, then RES is hook-up
secure.

'In (Sut 86) is a discussion connecting Goguen-Meseguer with information flow.

107

Proof:

Let RES be the event system (E,I,0,T,L,<,lvl), RES, the event system
(Ey, I, 01,T1, L, <, Ivh), and RES, the system (Eg, 1,09, T3, L, <, Il).
Let [be a level in L. In definition 10 vue({) was defined to be

{e€ E | lul(e) < 1}

Likewise, vue;(I) and vuey(l) are the sets
{e€ E, | wh(e) <1}

and
{eé Eg l lvlg(e) S l}

respectively.
It is then obvious that for all l€ L,
vuey({) = vue(l) N E,

and
vuey(l) = vue(l) N E,

Since RES, and RES, are both hook-up secure, for all | € L, vuey(l) and
vueg(l) are restrictive for systems RES; and RES;, respectively. Using the
results of Theorem 5, for all € L, vue(l) is restrictive for system RES. Thus
RES is hook-up secure. O

108

Chapter 10

An Example : A Delay Queue

In this chapter we illustrate the concept of hook-up security through a sim-
ple example, an unbounded delay queue. Even for this simple example the
proof of hook-up security is not trivial. It is hoped, however, that the proof
of security of a large system can be divided up via the hook-up theorem
into proofs involving components not much more complicated than the delay
queue. (The security of the more realistic bounded queue is more problematic,
because of the possibility of information flows through the error messages in-
dicating that the queue is full.)

10.1 Description of the Delay Queue

A delay queue is simply a pipeline for carrying messages from one point in a
system to another. There is no command to release messages; the messages
are released as soon as they arrive. Thus the effect is to put a delay between
the sending and receiving of a message. In our simple model, we assume that
the delay can be absolutely arbitrary, subject to the restriction that messages
come off the queue in the same order that they went on.

We formalize the model by introducing the set of messages, the input and

109

output events built from them, and the set of traces describing the possible
behaviors of the queue:

M = the set of messages
I={in}xM = theinput events
O={out} x M = theoutput events.
E=IuU0 = the set of events

A trace of the delay queue is any sequence of events such that each output
event follows its corresponding input event, and the outputs come in the
same order as the corresponding inputs. This can be formalized by defining
the function mp which maps a sequence of input events to the corresponding
complete sequence of output events. We will actually define mp so that it is
defined on all sequences of events, whether they include inputs or outputs or
both, except that it will ignore any output in computing the result.

mp(()) =
mp(a”((in,m))) = mp(a)((out,m))
mp(a((out,m))) = mp(e)

The set of traces T is then defined by:
T={r€E |VYnCr[nn10C mp(n)]}

This states that the outputs must always lag behind the inputs, so that the
outputs are always an initial segment of the mapped inputs. It is easy to see
that this set of traces has the following properties:

1. If a8 is a trace, then so is a.

2. If a is a trace, and 7 is an input, then a"(z) is a trace.

Thus it meets the requirements that it be input-total and closed under initial
segments.

110

10.2 Useful Facts

We need a few facts before we start proving that the delay queue is hook-up
secure.

Claim 1 The function mp distributes over concatenation:
mp(a"B) = mp(a)" mp(B)

Claim 2 Restriction distributes over concatenation:
(aAﬂ) TE =(al EI)A(.B T E)

Claim 3 If two sequences «; and a; are both initial segments of a third
sequence J, then they are comparable (one is an initial segment of the other):

g CEp& R = aCEaaVa;Ey

_Claim 4 It is permissible to “add” and “cancel” equal sequences from both
sides of an initial segment relation:

B E B, = a"p Ca"p,
a*fCaB, = AHEPS

Claim 5 If a8, 1 v and a C 4, then there is an “intermediate value” f,
such that §; C 5, and o”B; = 7.

Claim 6 o J 8 if and only if for some o; and e, a = a;"(e) and a; J .

Claim 7 The relation 3 is reflexive, transitive, and anti-symmetric. This
means formally that:

111

Claim 8 If 7 is a trace in T, and « is an element of E*, and for all 4’ such
that) C+' C ~:

mp(r™') 2 (") 10
then 7%y is a trace in 7.

The above claims are easy to prove by simple algebra and by induction on
the length of sequences.

10.3 Securit_y of the Delay Queue

Theorem 8 For any set M; C M of messages, the view V; = {in} x M; U
{out} x M, is restrictive. This means that for any a,y € E*, 8,8 € I', if

By eT&BTVi=FTVi&kyT(I-W)=)
then for some 4’ € E*

oM ET&Y TVi=1TVik v T(T-V)=()
We prove the theorem by means of the following lemmas:

Lemma 1 If #’ is formed from B by deleting an input {in,m) where m is
not in M, then there is a 4’ with the desired properties.

Lemma 2 If #’ is formed from B by adding an input (in,m) where m is not
in M, then there is a 4’ with the desired properties.

112

10.3.1 Proof of Lemma 1

Consider B of the form 8,"(e)*f; and # of the form 3,"8;, where e = (in,m).
Let T be the trace a™f;"(e)*8;"v, and let 7 be formed from 7 by deleting
the event ¢; 7/ = o/, which is equal to a”f""y.

We then have two cases to consider:

1. 7’ is a trace

2. 7’ is not a trace
In the first case, we are done; we can let 4’ be equal to 4. We then have:

. 1= gy
o 7’ is a trace

e YTVi=79TN

o ¥ 1 (I- Vi) =) (since by assumption 7 1 (I - V) = ()

which is what we needed to prove.

In the second case, we have that 7/ is not a trace, but the initial segment
a’B, is a trace (since it is an initial segment of the trace 7, as well, and traces
are closed under initial segments). Thus we have the following facts:

o mp(a*BMe)"B:™y) 2 («*Bi*e)"B"y) T O (this is implied by the
definition of the set of traces T'.)

o mp(a”f1™e)"B2"y) T mp(a”B) (because mp is distributive.)

By claim 3, two sequences which are both initial segments of a third sequence
must be comparable. Thus we have two subcases:

113

1. mp(a™f) 3 ("B (e)"B."y) 1O
2. mp(a”By) C ("B e} B:y) T O

In the first subcase, we have that

o a"p; is a trace.

o a”B3,"B; is a trace, since B, is a sequence of inputs and traces can always
be extended by inputs.

o mp(a”B1"B:"6) 3 mp(a”B,) for any &, since mp is distributive.
o mp(a”f1) 3 (a"B"(e)"B2"y) T O by assumption.

o (a"B1(e)"B"y) T O 3 (a”Bi™(e)"B:"6) 1 O for any § E 4, since the
operation | O is distributive.

o mp(a"B1"B;"6) 3 (" P1™{e)*B2"6) 1 O for 6 C 4, since T is transitive.

o (a"BiMe)"B;"8) T O = (”B1"B2"6) T O since e is not an output, and
so {e) 10 =).

o mp(a”$1"B;"6) 3 (a"Fi"B,"8) 1 O for § T v by substitution.

So we have that

CYAﬂlA,Bz
is a trace, and for all § C 4+,
mp(a”f"B;"8) I (a5 B8,"6) 1 O

Thercfore,

UAﬁlAﬂzA’Y

is a trace, by claim 8. But this contradicts the assumption that 7’ is not a
trace, so the first subcase is vacuous.

114

Therefore, we are left with the subcase that

mp(a”By) € (a"r"(e)"B2") T O

Since a”B; is a trace (it is an initial segment of a trace), we have by the
definition of the set of traces, mp(a”f;) 3 (e*f1) T O. Thus mp(a”By) is
bounded above by (a"1*{e)*B:"y) T O, and below by (a*81) T O, which
is equal to (a"f1™(e)"B2) T O (because e is an input, and B, is an input
sequence, they disappear when the operation | O is performed.) By claim 5
there is a 4, C 4 such that

mP(aAﬂl) = (OAﬂlA(e)AﬂzA’h) 10

which is equivalent to

mp(a”fr) = (e"B"B"n) 1 0 (10.1)

because e is an input.

We will choose v, to be the largest initial segment of 4 obeying equation 10.1.
Since v, C v, we can write v as 7;,"(e')"y; for some ¢’ and 7;. It must be
the case that e’ is an output; otherwise, (7; T €’) T O would be equal to
7 T O, contradicting the assumption that +, is the largest initial segment of
v obeying equation 10.1.

Since "B, is a trace, then so is o3z, because B; is an input sequence
and traces can always be extended by inputs. Furthermore, for any § C 7,

mp(a"p,"B,"8) I mp(a"p1)

and also we know that

(@ BB 1) 10 A (@"A"B:8) 10

Therefore, by claim 8 and by equation 10.1, a*$,*8;,"y, is a trace.

115

Now, since a8, (e)"3:" 11" (€')"12 is a trace, all initial segments are also, so
therefore, for any é C 72, we have

mp(QAﬁ1A<6)AB2A’71A<C’)A5) g (ahﬁlA(C)AﬂzA’ylA(C’)A&) T 0

Using the fact that mp and T O are distributive, we can write this as:

mp(a”B1)" mp((e)) mp(8; 11 "(e')"6)

i

[(e"81™(e)"B2"n) T O"[{e") T 016 1 O]

Because e is not an output, it is removed by the operation T O. We can then
rewrite the right side of the inequality as

[(@"8,"8;,"n) T O"({€') T OINé 1 O]

By equation 10.1we know that (a*8,*8:"v1) T O is equal to mp(a™B,).
Therefore, we can rewrite the right side once again as

[mp(c"B) 1 O]"(€') 1 O)'[é 1 O]
Thus we have:
mp(a”f1)" mp({e)) " mp(B:"1:1"(¢')"6) 2 [mp(a”B1) T O]*[(¢) 1 O]"[6 1 O]

so by equation 10.1, and claim 4

mp((e})"mp(B;"11"(¢')"6) 2 [(¢') 1 O1"[6 1 O]

Now since e is an input, mp((e)) is a singleton sequence. Also, since €’ is an
output, (¢/) T O is equal to (¢’). Thus the only way that the above inequality
can hold is if the following are true:

116

o mp({e)) = (¢)
o mp(B"n™(e)*6) 3610

Since €' is an output, it has no effect on the result of operating with mp.
Therefore:

mp(B2"n"6) 3610

Concatenating mp(a”™f1) = (a*B1"B2"n1) T O to both sides of the inequality,
as equation 10.1 permits us to do, yields:

mp(a” BB 1 "6) T ("B B n8) T O

Since this is true for any é§ C 7., we conclude from claim 8 that
618" nr

is a trace.

Thus we can let 4’ be 1,"y;. This only differs from 4 by the abscnce of the
event e’. However, since we have established that (¢) = mp((e)), and since
e was by assumption in I — V}, then e must be of the form (in,m) for some
m ¢ M,, and ¢’ must be of the form (out,m), and so € is not in ¥, either.
Therefore, 4’ T Vi = 4 1T V4. This completes the proof of the first lemma.

10.3.2 Proof of Lemma 2

The proof of this lemma is essentially the same as the proof of the last lemma,
except that in this case it is necessary to show that inputs can be added to
a trace, rather than deleted.

117

10.3.3 Proof of Theorem 8

Using the special cases in which the new input sequence 8’ differs from 8
by a single input (either deleted or added), we can prove the case for 8 and
B’ differing in arbitrary ways by induction. It is obvious that any change
between two traces can be broken down into a sequence of changes that only
involve one event.

118

Chapter 11

A State Machine Formulation
of Restrictiveness

As we saw in the last chapter, proving security directly on the set of traces
associated with a system can be tedious, even for simple systems. If the
traces are produced by the actions of a machine, it is often easier to prove
properties about the state transitions of the machine than it is to prove
properties about the traces of the machine. In this chapter, we introduce a
property of state machines, which we call state machine restrictiveness, such
that if a state machine is restrictive with respect to a particular view, then
the event system associated with its set of traces is restrictive with respect
to that view. This gives rise to a definition of hook-up security for state
machines that does not rely on first computing the set of traces.

A state machine is an abstract model of an information processing system. In
this model, the information possessed by the system is recorded in the state of
the system. Information is processed through a sequence of state transitions
made by the system as it changes state to reflect progress in the task being
performed or to reflect new information or requests fed into the system from
outside. The system may also change state as a result of sending out replies,
status information, or requests of its own; in which case the state records
the system’s place in the communication protocol. We can thus distinguish

119

three kinds of state transitions:

¢ The machine receives new information from the outside in the form of
an input event, and changes state to record this new information.

e The machine sends out information in the form of an output event, and
changes state to reflect the place in the protocol.

o The machine makes an internal transition; it changes state to reflect
internal progress in the information processing.

11.1 Attributes of a State Machine

To describe a state machine, it is necessary to give the following components:

1. The set S of possible states. The state must record all information the
system needs to know how to respond in the future, which includes
the data being processed as well as the place in the communication
protocol.

2. The initial state .

3. The set E of possible events. The events are signals associated with
state transitions; either inputs from outside, outputs sent to outside,
or internal transitions.

4. The set I of inputs.
5. The set O of outputs.

6. The set TR of possible transitions. A transition is a state change with
the associated signal. Thus a transition has three components: the
state before the transition, the state after the transition, and the event
(input, output, or internal event) accompanying the transition.

120

We will use the following notation for transitions: If from state o, the system
may make a transition to o, with accompanying signal e, then we will indicate

this by oy i o3.

This can be read as “oy goes to o, on ¢”. We will also have occasion to
talk about eztended transitions: If for some sequence of events ey, ey, ..., €,

ey
and some sequence of states oy, 03, ..., 0ny1, We have that oy — o2 and that

e
g; -—’»0',4.1 for all § < n , then we will say that “oy goes to 0,4, on the

. . (81,...,31;) .
sequence (ey,...,€,)", indicated by 6y ——— 04;. By convention, every

O

state goes to itself on the empty sequence: o7 — o;.

The set of traces of a state machine is the set of event sequences produced
by the extended transitions starting from the initial state oq.

11.2 Security of State Machines

A user’s projection on a state machine is what determines how the state
machine appears to the user. A projection can be specified by giving two
parameters: a set v of events which are visible to the user, and an equivalence
relation = on states, which tells which states are to be considered identical
from the point of view of the user. In a secure system, it is necessary to
decide for each user which events that user will be allowed to sce and what
state information he will be allowed to infer. These considerations give rise
to a projection for each user. A user’s projection is said to be restrictive if
it is impossible for the user, through observations visible to the projection,
to distinguish states which are considered equivalent for that projection, or
to learn anything about the sequence of inputs which are not visible to the
projection. For a projection to be restrictive for a system, it is necessary that
the transition relation for the system respect the equivalence relation for that
projection: the transitions made by the system cannot reveal any state or
input information that is forbidden to that projection. The equivalence class
of a state under the equivalence relation & characterizes the portion of the
state that is knowable for the projection.

121

Let oy Z o] be an arbitrary transition of S. Then for the projection charac-
terized by (v, =) to be restrictive for state machine S, it must be that:

e If z is an input which is not in view v, then oy = o].

This rule says that inputs invisible to the projection can have no effect
on the state’s equivalence class for the projection. If we consider events
visible to the projection to be “low-level” and events not visible to the
projection to be “high-level”, then this is a kind of “no write down”
policy—it is not permissible for inputs invisible to a projection to “write
down” and affect the information in the state visible to that projection.

Let 02 be a state such that oy = o2. Then there must be a “similar” transition
possible from state o;. That is, there must be a state ¢ and a sequence of
events 4 such that:

y
® 0, —0,

® 0y X O

e ~ is sufficiently similar to the sequence (z).

For sequence « to be sufficiently similar to (z), it must be that

— If z is an input, then v = (z).

— If z is a non-input (an output or an inlernal event) which is not
in v, then y T (JUv) = ().

— If zis a non-input and is in v, then 4 must be of the form v,*{z)"y,
where 11 T (JUv) =9, T (JUv) = ().

These rules say that the set of ways in which an input may affect a state is
equivalent to the set of ways in which that input may affect any equivalent
state; also that if an eutput or internal event is possible from one state,
then a similar sequence is possible from any equivalent state, and the sets of
possible resulting states are equivalent. Two non-input sequences are similar

122

for the projection if they contain the same visible events occurring in the
same order.

The two rules about non-inputs correspond to a “no read up” policy: If two
states are equivalent for a projection, then they only differ in “high-level”
information (that is, information that is not supposed to be visible to the
projection.) By observing outputs, a user can read portions of the state of the
system. To prevent him from reading “high-level” information, the visible
events in the output sequence can only depend on “low-level” information:
the equivalence class of the state for that projection. It is okay to allow any
number of invisible outputs and internal events to be interspersed among the
visible events, since by assumption the user only sees the visible portion of
event sequences.

The rules above imply the trace definition of restrictiveness: If a projection
characterized by events v is restrictive for the state machine S, then v will
be restrictive for the set of traces produced by §. (There are, however,
some state machines which are definitely not restrictive, which nevertheless
give rise to a restrictive set of traces.) The proof of this fact involves a
straightforward induction on the lengths of traces. Rather than proving this
fact, and appealing to the hook-up theorem, we will instead prove directly
that state machine restrictiveness is a composable property.

11.3 The Composability of Restrictiveness

To see that restrictiveness of state machines is composable, one needs to prove
that if a machine A and nachine B both obey state machine restrictiveness
for projections given by (v4,~4) and (vp,=pB), respectively, then the com-
posite machine formed by connecting them with communication links obeys
state machine restrictiveness for some projection given by ((v4 U vp),~) for
some equivalence relation . For the connection to make sense, the two
machines must be compatible, in the sense that every shared event must be
an output for one machine and input for the other, and the {two machines
must agree on whether the event is in the composite projection. This last
requirement in tie case of multi-level security corresponds to the requirement

123

that the two systems agree on the levels of shared events. It is formalized by
saying that vy N Ep = vg N E4. We will use v to denote v4 U vg.

11.3.1 The Composite Machine

The states of the composite machine are pairs of states of A with states of

B.

The transitions of the composite machine are given by: (A;, B,) —e-+(A2, B,)
only if one of the following cases holds:

1. A 5 A, is a legal transition for machine A, and e is not an event of

B, and 31 = B2

2. B ;Bz is a legal transition for machine B, and e is not an event of
A, and 4, = A,

3. A = A, and B N B; are legal transitions for A and B, respectively,
and e is an input for one machine and an output for the other.

Each transition is either an example of an independent transition of one of
the component machines, or is an example of communication in which one
machine makes an output which is an input to the other machine.

The equivalence relation on the states of the composite machine is obtained
from the equivalence relation for the components as follows: (A;, B;) is equiv-
alent to (A;, B;) if and only if A; is equivalent to A; and B, is equivalent to
B,. Thus ~=~4 X ~p.

The inputs of the composite machine are those inputs for either component
which are not provided by the other component. Likewise, the outputs of the
composite machine are the outputs of either machine which are not inputs
to the other.

124

11.3.2 Demonstrating Restrictiveness for the Com-
posite Machine

We need to show that

1. The composite machine is input-total.

Each input for the composite machine is an input for one component
and is not visible to the other component. Thus according to the tran-
sition relation for the composite machine, a legal transition is for the
state of the machine that receives the input to change as it would inde-
pendently, and for the state of the other machine to remain unchanged.
Thus for every input there is a corresponding transition, and the com-
posite machine is input-total.

2. If the composite machine receives an input which is not in the projec-
tion, then the state remains in the same equivalence class.

Since an input for the composite machine only affects one of the com-
ponents, the component not affected will trivially remain in the same
equivalence class. The component that is affected by the input will
remain in the same equivalence class since it makes the same transi-
tion it would make in isolation, and by assumption each component is
restrictive for the projection.

3. If the composite machine in one state receives an input which is in the
projection and makes a transition to a new state, then from a state
equivalent to the first state it can make a transition with the same
input to a state equivalent to the second state.

Once again, since only one component is affected, this follows trivially
from the fact that each component independently has the property.

4. If a non-input event which is not in the projection can occur in one
state of the composite machine resulting in a new state, then from any
state equivalent to the first state a sequence of non-inputs invisible
to the projection can occur, with the machine winding up in a state
equivalent to the second state.

125

The proof of this is more complicated. Let (A,, B;) and (A,, B;) be
two equivalent states for the composite machine, so A; =4 A, and

B, =p B;. Let a possible transition be (A1, B) :—»(A’l, B}).

If e is a non-input for the composite machine then it is a non-input for
at least one of the two components. Let us assume that e is a non-input
for system A; the other case is proved similarly. Then by definition of

the transitions for the composite machine, it must be that A; it Al.

If e is shared by B, then it must be an input by the compatibility
conditions. Since it is not in view v, it must be that B} ~g B, since
by assumption B is restrictive for view v. If e is not shared by B, then
B} = B,. Since A is also restrictive for view v, there must be a state
A} and a sequence v of non-inputs with no events in v such that:

Ay g AL & Ay D A

Once again by the compatibility conditions, any events in 4 which are
shared by B must be inputs. Since they are all events not in view v,
then there must be a state Bj such that:

11Eg
; ~pg Bg & Bz —_— B;

. &
(In fact, if B is any state such that B, —— B}, then B} ~p B,.)

Thus (As, By) — (AL, B) and A, ~4 A! and Bl ~p B, (this last equiv-
alence is from transitivity; we established that B, ~p Bj and B, ~p B,
and B, =g B;). By the definition of the equivalence relation on the
composite machine, (A}, By) = (A5, B;).

. If in one state of the composite machine a non-input occurs which is
in view v and the machine makes a transition to a new state, then the
composite machine in any state equivalent to the first state can allow a

sequence of non-inputs to occur which contains the given event but no -

other events in the view, and make a transition to a state equivalent
to the second state.

126

This proof is similar to the one above. Once again, let the transition be
(A1, By) —e-»(A’l, BY), and let (A3, B,) be a state equivalent to (A,, B).
Thus A, ~4 A; and B, =g B;. Also, once again assume that e is a
non-input of system A. '

By definition of the transitions for the composite machine, it must be
that A; i»A’l If e is shared by B, then it must be an input by the

compatibility conditions, and it must be that B, -i»B{ Since A is
restrictive, and A; =4 Aj, then there must be a sequence of non-inputs
4 and a state A} such that

! mq Al & Ay — AL
where 7 is of the form 7;*(e)"y; and 7; and ~4; contain only non-inputs

not in view wv.

By the compatibility conditions, v, T Ep contains only inputs for sys-
tem B which are not in view v, and similarly for 4. Therefore, since
B is restrictive, there is a B3 such that

mMmtEp

B3 ~pg B; & B, —— B;

Now, by transitivity, B; ~p B;, so since e is an input to B and
e
B, — Bj, there must be a By such that

B4 =g B{ &B;;:)B.;

Since v, T Eg contains only inputs for system B which are not in view
v, it must be that for some B,

71Ep

B; ~p B4 & B4—-———§B-’2
Thus (A,, B,) — (A}, B,) and (4%, BY) ~ (4), BY).
In the case that e is not a shared event, and letting 4 be as in the first

. . YiEp
case, all the events in v are not in view vg and so B, —— Bj and

B; ~p B,. In this case, B} = B, and so B} ~p B} also.

127

11.4 Hook-Up Security of State Machines

In analogy with event systems, we define a rated state machine to be a struc-
ture (S, L, <, lul), where S is a state machine, L is a set of security levels, <
is a partial ordering on L, and lvl is a function assigning a security level to
each visible (input or output) event of S.

A rated state machine (S, L, <, [vl) is defined to be a hook-up secure state
machine if for each level ! there is an equivalence relation = such that the
projection defined by the pair (vue(l),~;) is restrictive in state machine S.
(The function vue(l) was defined in chapter 9. It is the set of events of level
less than or equal to l.)

128

Chapter 12

The Delay Queue As a State
Machine

In this chapter, we redo the proof of the security of the delay queue using
the state machine formulation of restrictiveness. The simplicity of this proof
illustrates that the state machine formulation is much easier to work with
than the trace formulation.

12.1 The Events

As in chapter 10, we will let the inputs and outputs of the delay queue be
defined in terms of a set of messages M.

e J=inxM
e O=outx M
e E=1UO

129

12.2 The States

A state of the delay queue is given by a sequence of messages: the messages
that have been received by the queue but have not yet been delivered. The
convention we will use is as follows: {m,,mg, ..., m,(is the state in which the
order of messages to be delivered are m; then m,, etc.

12.3 The Transition Relation

There are two kinds of transitions for the delay queue:

1. The queue may receive a message. In this case the state message se-
quence grows by one message. This corresponds to the transition

The last message to arrive is the last message to be delivered, as mes-
sages are delivered starting with the leftmost message.

2. The queue may deliver a message. In this case the state message se-
quence shrinks by one message. This corresponds to the transition

A (out,m)
(m)y ——— 7

It will be useful for the proof of restrictiveness of the delay queue to define
the output function OF which takes a sequence of messages and returns the
corresponding sequence of outputs. This is defined as follows:

* OF(()) =)
o OF(e"(m)) = OF(c)"{(out,m))

130

The significance of the function OF is this : Starting in a state 4, the queue
can make a sequence of outputs (with no inputs occurring) resulting in a
state 7’ if and only if for some sequence of messages 7" and some sequence

of outputs 7
A

rT=711
and

OF(y")=r
The function OF distributes over concatenation:

OF(m™y2) = OF(m)"OF(7,)

These results are easily proved by induction on the lengths of message se-
quences.

12.4 The Views and Equivalence Relations

As in chapter 10, we define a view V] in terms of a subset M; of messages:
Vi = in X M; Uout x M;. The corresponding equivalence relation =, is

defined by

M7 @ nTM=7%nTM

With this choice of the views, if T M; = (), then OF(7)TW; = ().

12.5 Proving Restrictiveness

To show that the delay queue meets the definition of restrictiveness for state
machines, we need to show that:

131

1. I mgM;, and

then
v~y

That is, inputs outside of the view do not change the state’s equivalence
class. '

For any 9, 4/ and m as in the hypothesis, we can conclude by the
rules for the transition relation that 4/ = 4*(m). Then, by the def-
inition of restriction of a sequence to a set, if m is not in Mj, then
(Y(m))T My = vT M, and so v’ =, 7.

2. f meM,;, and v; = 742, and

then for some 7;,

- (inm) ,
* T2—7;

/! /
L0 P e

For 71, 11, 712, and m as in the hypothesis, we can conclude that 4] is
of the form ,*(m). Therefore we can let 4} be 4, (m). It is then clear
that

Since for any sequences oy and o3, and any set S,

(01"02)18 = (01 15)(0215)
then
72T My = (72T M1)"((m) T My)
By assumption, 43 &%, 71, so by the definition of =, we have

72T My = (mTM)((m) T M)
The righthand side is equal to (v,"(m)) T M; or 4] T M;. Thus v} =, 4.

132

(out,m)
3. ImgM,, and 4, =; 73, and 74 -, 1, then for some 73, and some

sequence of output events

° 12—

e TT(JUW) =)

e R
This is the requirement for transitions involving outputs not in view
Vi.

By the transition relation, if (out,m) is an output from 4; and the final
state is 7}, then it must be that 4; = (m)"y]. In this case, if m is not
in M, then 4] T M; = 4T M,;. By the assumption that v, ~; 72, it
follows that v; T M; = v, T M;, and so 4] = 742. Therefore we can let
2 =72 and let 7 = ().
{out,m)

4. If me M, and v, =, 7,2, and y; ——— 71, then for some 73, and some

sequences of output events 7, and 7,

n"outmpn
® 72 —* Y2
e nT(IUW) =)
e T(TUW) =)
* ™M

Once again, it must be that y; = (m)”{. Since 1, =1 72, by the defini-
tion of ~; it must be that 4, T M; = v, T M;. The righthand side is just
({m) T My1)*(v; T M;), which is (m)*(v;1M,), since m € M;. There-
fore, 4, must be of the form 45*(m)"y,, where (74T M,) = (v, T M)
and (441 My) =).
Therefore, we have that

TN

By the result in section 12.3,

OF(™Nmy)

T2—"2

133

Now, OF(v2\m)) = OF(vy4)"OF({m)) since OF distributes over con-
catenation. By the definition of OF, OF({m})) = ({out,m)). Therefore,

we have R
OF(+y) ((outm)) |
— Y3

Also by the result in section 12.4, and from the fact that 13 T M, = ()
and the fact that OF only produces sequences of outputs,

OF(7;)T(IUW) = ()

72

Thus we can let 7, be OF(y%) and 7, be (), and the desired properties
hold.

134

Bibliography

[Ars 85]

[BLP 76]

(Dij 76]
[Flo 67]

[Gog 84]

[Goo 86}

[Gri 81]
[Hoa 69)

[Hoa 85]

Arsenault, A. et. al. Trusted Network Interpretation. (DOD
NCSC-TG-005, National Computer Security Center).

Bell, D.E. and LaPadula, L.J. Secure Computer System: Uni-
fied Ezposition and Multics Interpretation. (Technical Report no.
ESD-TR-75-306, Electronics Systems Division, AFSC, Hanscom
AF Base, Bedford MA, 1976).

Dijkstra, E.W. A Discipline of Programming. Prentice-Hall, 1976.

Floyd, R.W. “Assigning Meanings to Programs.” (Proceedings of
the Symposium on Applied Mathematics (Mathematical Aspects of
Computer Science)), American Mathematical Society, New York,
1967.

Goguen, J.A. and Meseguer, J. “Unwinding and Inference Con-
trol.” (Proceedings of the 1984 Symposium on Security and Pri-
vacy), IEEE, 1984.

Good, D.L et. al. Report on Gypsy 2.05. Computational Logic,
Austin, TX, 1986.

Gries, D. The Science of Programming. Springer—Verlag, 1981.

Hoare, C.A.R. “An Axiomatic Basis of Computer Programming.”
Communications of the ACM, 12:576-583, 1969.

Hoare, C.A.R. Communicating Sequential Processes. Prentice-

Hall, London, 1985.

135

[Jac 88]

{Loc 80]

[McC 87]

[Mil 80]

[Sut 86)

Jacob, J.L. “Specifying Security Properties.” (Proceedings of the
1988 Symposium on Security and Privacy), IEEE 1988.

The InaJo Specification Language Reference Manual. System De-
velopment Corporation, 1980.

McCullough, Daryl “Specifications for Multi-Level Security and
a Hook-Up Property.” (Procedings of the 1987 Symposium on Se-
curity and Privacy), IEEE, 1987.

Milner, R.A. A Calculus of Communicating Systems. Volume 92,
LNCS, Springer, 1980.

Sutherland, D. “A Model of Information.” (Proceedings of the 9th
National Computer Security Conference), 1986.

NOTE: Although this report references RL-TR-91-36, Volumes III =~

VII dated April 1991, no limited information has been
extracted. Distribution Statement for Volumes III - VII
is as follows:

Distribution authorized to USGO agencies and private
individuals or enterprises eligible to obtain export-
controlled technical data according to DOD 5230.25;
Apr 91.

136

ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C3I) activities

for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD Program Offices (POs) and other
ESD elements to perform effective acquisition of CgI systems. In addition,
Rome Laboratory's technology supports other AFSC Product Divisions, the
Air Force user community, and other DOD and non-DOD agencies. Rome
Laboratory maintains technical competence and research programs in areas
including, but not limited to, communications, command and control, battle
management, intelligence information processing, computational sciences
and software producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.

